Skip to main content
Log in

Hematological and histopathological evaluation of meat-type quails fed Madagascar cockroach meal

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Aiming at the sustainability of meat production, insects can replace traditional ingredients in the diet of poultry. Studies evaluating performance in birds have emerged to ensure this ability, but few address the health parameters of animals. This study was carried out to evaluate the effects of the inclusion of Madagascar cockroach meal in traditional diets on hematological and histopathological traits of meat-type quails. The inclusion of Madagascar cockroach meal in the diet was evaluated in four levels: 0%, 6%, 12%, and 18%. Observations for hematological and histopathological traits from 6 repetitions on each group were recorded for both sexes at 35 days of age. Hematological parameters were not influenced by Madagascar cockroach inclusion on diet and quail’s sex. Red and white blood cells count were within the normal range for poultry. No significant findings were observed during the histopathological evaluation of the pancreas, duodenum, jejunum, and ileum. Liver fatty degeneration was visualized in all treatments in the same intensity. Quail’s diets containing up to 18% insect meal during the growth period did not affect the studied health parameters, so the Madagascar cockroach meal could be considered as an alternative to a protein ingredient for poultry production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

The code in R language used in the current study is available from the corresponding author on reasonable request.

References

  • Agina, O.A., Ezema, W.S. and Iwuoha, E. M., 2017. The hematology and serum biochemistry profile of adult japonese quail (Coturnix coturnis japonica), Notulae Scientia Biologicae, 9 (1), 67-72. https://doi.org/10.15835/nsb919928

    Article  CAS  Google Scholar 

  • Agunbiade, J.A., Adeyemi, O.A., Ashiru, O.M., Awojobi, H.A., Taiwo, A.A., Oke, D.B. and Adekunmisi, A.A., 2007. Replacement of fish meal with maggot meal in cassava-based layers’ diets, The Journal of Poultry Science, 44, 278-282. https://doi.org/10.2141/jpsa.44.278

    Article  CAS  Google Scholar 

  • Alagawany, M., Elnesr, S.S., Farag, M., El-Hack, M., Khafaga, A., Taha, A., Tiwari, R., Yatoo, M., Bhatt, P., Khurana, S. and Dhama, K., 2019. Omega-3 and Omega-6 Fatty Acids in Poultry Nutrition: Effect on Production Performance and Health, Animals, 9, 573. https://doi.org/10.3390/ani9080573

    Article  PubMed Central  Google Scholar 

  • Alegretti, G., Talamini, E., Schmidt, V. and Borgoni, P.C., 2018. Insect as feed: An emergy assessment of insect meal as a sustainable protein source for the Brazilian poultry industry, Journal of Cleaner Production, 171, 403-412. https://doi.org/10.1016/j.jclepro.2017.09.244

    Article  Google Scholar 

  • Ali, M. A., Hmar, L., Devi, L. I., Prava, M., Lallianchhunga, M.C. and Tolenkhomba, T.C., 2012. Effect of age on the haematological and biochemical profile of Japanese quails (Coturnix coturnix japonica), International Multidisciplinary Research Journal, 2 (8), 32-35.

    Google Scholar 

  • Al-Qazzaz, M. F. A., Ismail, D., Akit, H. and Idris, L.H., 2016. Effect of using insect larvae meal as a complete protein source on quality and productivity characteristics of laying hens, Revista Brasileira de Zootecnia, 45 (9), 518-523. https://doi.org/10.1590/S1806-92902016000900003

    Article  Google Scholar 

  • Benzertiha, A., Kierończyk, B., Rawski, M., Kołodziejski, P., Bryszak, M. and Józefiak, D., 2019. Insect Oil as An Alternative to Palm Oil and Poultry Fat in Broiler Chicken Nutrition, Animals, 9 (3), 116. https://doi.org/10.3390/ani9030116

    Article  PubMed Central  Google Scholar 

  • Biasato, I., De Marco, M., Rotolo, L., Renna, M., Lussiana, C., Dabbou, S., Capucchio, M. T., Biasibetti, E, Costa, P., Gai, F., Pozzo, L., Dezzuto, D., Bergagna, S., Martínez, S., Tarantola, M., Gasco, L. and Schiavone, A., 2016. Effects of dietary Tenebrio molitor meal inclusion in free-range chickens, Journal of Animal Physiology and Animal Nutrition, 100, 1104-1112. https://doi.org/10.1111/jpn.12487

    Article  CAS  PubMed  Google Scholar 

  • Biasato, I., Gasco, L., De Marco, M., Renna, M., Rotolo, L., Dabbou, S., Capucchio, M.T., Biasibetti, E., Tarantola, M., Bianchi, C., Cavallarin, L., Gai, F., Pozzo, L., Dezzutto, D., Bergagna, S. and Schiavone, A., 2017. Effects of yellow mealworm larvae (Tenebrio molitor) inclusion in diets for female broiler chickens: implications for animal health and gut histology, Animal Feed Science and Technology, 234, 253-263. https://doi.org/10.1016/j.anifeedsci.2017.09.014

    Article  Google Scholar 

  • Biasato, I., Gasco, L., De Marco, M., Renna, M., Rotolo, L., Dabbou, S. Capucchio, M.T., Biasibetti, E., Tarantola, Sterpone, L., Cavallarin, L., Gai, F., Pozzo, L., Bergagna, S., Dezzutto, D., Zoccarato, I. and Schiavone, A., 2018. Yellow mealworm larvae (Tenebrio molitor) inclusion in diets for male broiler chickens: effects on growth performance, gut morphology, and histological findings, Poultry Science, 97, 540-548. https://doi.org/10.3382/ps/pex308

    Article  CAS  PubMed  Google Scholar 

  • Bovera, F., Piccolo, G., Gasco, L., Marono, S., Loponte, R., Vas-salotti, G., Mastellone, V., Lombardi, P., Attia, Y.A. and Nizza, A., 2015. Yellow mealworm larvae (Tenebrio molitor, L.) as a possible alternative to soybean meal in broiler diets, British Poultry Science, 56, 569-575. https://doi.org/10.1080/00071668.2015.1080815

    Article  CAS  PubMed  Google Scholar 

  • Butler, E.J., 1976. Fatty Liver Diseases in the Domestic Fowl - A Review, Avian Pathology, 5 (1), 1-14. https://doi.org/10.1080/03079457608418164

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, T.S.G., Saad, C.E.P., Alvarenga, R.R., Oliveira, E.A., Carvalho, M.C.S., Ramos, L.G.S., Ferreira, L.G., Gonçalves, T.M., Costa, D.V. and Zangeronimo, M.G., 2019. Inclusion of Madagascar cockroach (Gromphadorhina portentosa) Meal in the diet of cockatiels (Nymphicus hollandicus) in captivity: Influences on offspring development, Research in Veterinary Science, 126, 89-93. https://doi.org/10.1016/j.rvsc.2019.08.016.

    Article  PubMed  Google Scholar 

  • Choi, I.H., Kim, J.M., Kim, N.J., Kim, Kim, J. D., Park, C., Park, J.H. and Chung, T.H., 2018. Replacing fish meal by mealworm (Tenebrio molitor) on the growth performance and immunologic responses of white shrimp (Litopenaeus vannamei), Acta Scientiarum Animal Sciences, 40, 1-9. https://doi.org/10.4025/actascianimsci.v40i1.39077

    Article  Google Scholar 

  • Cotter, P.F., 2015. An examination of the utility of heterophil-lymphocyte ratios in assessing stress of caged hens, Poultry Science, 94, 512–517. https://doi.org/10.3382/ps/peu009

    Article  CAS  PubMed  Google Scholar 

  • Diehl, E., Valsamakis, G., van der Veen, I., Merkus, K., Di Mag, L.P., Sauren, S., Jager, W., Di Magliano, L.P., 2014. Alternative Invertebrate Source for Animal: Implications and Constraints towards Sustainable Protein Recycling, (Wageningen University, Wageningen, The Netherlands).

  • Fair, J., Whitaker, S. and Pearson, B., 2007. Sources of Variation in haematocrit in birds, International Journal of Avian Science, 149 (3), 535-552. https://doi.org/10.1111/j.1474-919X.2007.00680.x

    Article  Google Scholar 

  • Ferreira, F., 2015. Digestibilidade e exigência nutricional de lisina sob o conceito de proteína ideal em dois grupos genéticos de codornas de corte. (unpublished PhD thesis, Universidade Federal de Minas Gerais)

  • Gao, Z., Wang, W., Lu, X., Zhu, F., Liu, W., Wang, X. and Lei, C., 2019. Bioconversion performance and life table of black soldier fly (Hermetia illucens) on fermented maize straw, Journal of Cleaner Production, 230, 974-980. https://doi.org/10.1016/j.jclepro.2019.05.074

    Article  CAS  Google Scholar 

  • Harikrishnan, R., Kim, J.S., Balasundaram, C. and Heo, M.S., 2012. Immunomodulatory effects of chitin and chitosan enriched diets in Epinephelus bruneus against Vibrio alginolyticus infection, Aquaculture, 326-329, 46-52. https://doi.org/10.1016/j.aquaculture.2011.11.034

    Article  CAS  Google Scholar 

  • Harris, D.J., 2000. In: T. N. Tully, Jr., G.M. Dorrestein, A. K. Jones (eds), Clinical tests. Handbook of Avian Medicine, 2nd ed, 43–51, (Saunders Elsevier, Woburn)

  • Katya, K., Borsra, M.Z.S., Ganesan, D., Kuppusamy, G., Herriman, M. and Ali, S.A., 2017. Efficacy of insect larval meal to replace fish meal in juvenile barramundi, Lates calcarifer reared in freshwater, International Aquatic Research, 9, 303-312. https://doi.org/10.1007/s40071-017-0178-x

    Article  Google Scholar 

  • Khusro, M., Andrew, N. R. and Nicholas, A., 2012. Insects as poultry feed: a scoping study for poultry production systems in Australia, World’s Poultry Science Journal, 68, 435-446. https://doi.org/10.1017/S0043933912000554

    Article  Google Scholar 

  • Kierónczyk, B., Rawski, M., Józefiak, A., Mazurkiewicz, J., Swiatkiewicz, S., Siwek, M., Szumacher-Strabel, M., Ciéslak, A., Benzertiha, A. and Józefiak, D., 2018. Effects of replacing soybean oil with selected insect fats on broilers, Animal Feed Science and Technology, 240, 170–183.https://doi.org/10.1016/j.anifeedsci.2018.04.002

    Article  CAS  Google Scholar 

  • Lee, C.G., Da Silva, C.A., Lee, J.Y., Hartl, D. and Elias, J.A., 2008. Chitin regulation of immune responses: an old molecule with new roles, Current Opinion in Immunology, 20 (6), 684–689.https://doi.org/10.1016/j.coi.2008.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, C., Masri, J., Perez, V., Maya, C. And Zhao, J., 2020. Growth performance and nutrient composistion of Mealworms (Tenebrio molitor) fed on fresh plant materials-supplemented diets, Foods, 9, 151.https://doi.org/10.3390/foods9020151

    Article  CAS  PubMed Central  Google Scholar 

  • Maxwell, M.H. and Robertson, G.W., 1995. The avian basophilic leukocyte: a review, Worlds Poultry Science Journal, 51, 307-325.https://doi.org/10.1079/WPS19950021

    Article  Google Scholar 

  • Mihailov, R., Lasheva, V. and Lashev, L., 1999. Some hematological values in Japanese Quails, Bulgarian Journal of Veterinary Medicine, 2 (2-3), 137–139.

    Google Scholar 

  • Miranda, C. D., Cammack, J. A. and Tomberlin, J. K., 2020. Mass production of the black soldier fly, Hermetia illucens (L.), (Diptera: Stratiomyidae) reared on three manure types, Animals, 10, 1243.https://doi.org/10.3390/ani10071243

    Article  PubMed Central  Google Scholar 

  • National Research Council – NRC, 1994. Nutrient requirements of poultry, 9th ed., (The National Academies Press, Washington, DC). https://doi.org/10.17226/2114

  • Navarro-Villa, A., Mica, J. H., de los Mozos, J., den Hartog, L.A. and García-Ruiz, A.I., 2019. Nutritional Dietary Supplements to Reduce the Incidence of Fatty Liver Syndrome in Laying Hens and the Use of Spectrophotometry to Predict Liver Fat Content, Journal of Applied Poultry Research, 28 (2), 435–46.https://doi.org/10.3382/japr/pfz005

    Article  CAS  Google Scholar 

  • Oonincx, D.G.A.B. and Dierenfeld, E.S., 2012. An investigation into the chemical composition of alternative invertebrate prey, Zoo Biology, 31 (1), 40-54. https://doi.org/10.1002/zoo.20382https://doi.org/10.1002/zoo.20382

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Elorduy, J., Gonzàlez, E.A., Hernández, A.R. and Pino, J. M., 2002. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens, Journal of Economic Entomology, 95 (1), 214-220.https://doi.org/10.1603/0022-0493-95.1.214

    Article  PubMed  Google Scholar 

  • R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Ritchie, B.W., Harrison, G.J. and Harrison, L.R., 1994. Avian medicine: principles and application, (Wingers Publishing, Lake Worth) Accessed 03/07/2022 http://avianmedicine.net/publication_cat/avian-medicine/

  • Rosa, G.A., Sorbello, L.A., Dittrich, R.L., Moraes, M.T.T. and Oliveira, E.G., 2011. Perfil hematológico de codornas de japonesas (Coturnix japonica) sob estresse térmico, Ciência Rural, 41(9), 1605-1610.https://doi.org/10.1590/S0103-84782011005000110

    Article  Google Scholar 

  • Rostagno, H.S., Albino, L.F.T., Hannas, M.I., Donzele, J.L., Sakomura, N.K., Perazzo, F.G., Saraiva, A., Teixeira, M.L., Rodrigues, P.B., Oliveira, R.F., Barreto, S.L.T. and Brito, C.O., 2017. Tabelas Brasileiras para Aves e Suínos: Composição de Alimentos e Exigências Nutricionais, 4th ed. (UFV, Viçosa)

  • Rumbos, C. I., Karapanagiotidis, I. T., Mente, E., Psofakis, P. and Athanassiou, C. G., 2020. Evaluation of various commodities for the development of the yellow mealworm, Tenebrio molitor, Scientific Reports, 10, 11224.https://doi.org/10.1038/s41598-020-67363-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samour, J., 2016. Avian Medicine, 3th ed., (Elsevier, St. Louis)

    Google Scholar 

  • Samour, J., 2005. Diagnostic Value of Hematology. In: Greg J. Harrison and Teresa Lightfoot (eds), Clinican Avian Medicine, 587-610, (Spix, Palm Beach)

    Google Scholar 

  • Schossler, J.E.W., Serafini, G.M.C. and Lucas, S.S., 2013. Valores laboratoriais e aspectos histológicos de Codornas domésticas (coturnix coturnix japonica), Revista Científica Eletrônica de Medicina Veterinária, 11 (21), 1–13. Accessed 03/07/2022 http://faef.revista.inf.br/imagens_arquivos/arquivos_destaque/gz0g97FEwiolopW_2013-8-14-15-25-2.pdf.

  • Shini, S., Kaiser, P., Shini, A. and Bryden, W.L., 2008. Differential Alterations in Ultrastructural Morphology of Chicken Heterophils and Lymphocytes Induced by Corticosterone and Lipopolysaccharide, Veterinary Immunology and Immunopathology, 122 (1–2), 83–93.https://doi.org/10.1016/j.vetimm.2007.10.009

    Article  CAS  PubMed  Google Scholar 

  • Van Huis, A., Itterbeeck, J.V., Klunder, H., Mertens, E., Halloran, A., Muir, G. and Vantomme, P., 2013. Edible insects: Future perspectives for food and feed security, (Food and Agriculture Organization of the United Nations, Rome). Accessed 03/07/2022 http://www.fao.org/3/i3253e/i3253e.pdf.

  • Vargas-Abúndez, A.J., Randazzoa, B., Foddaia, M., Sanchinia, L., Truzzia, C., Giorgini, E., Gascob, L. and Olivotto, I., 2019. Insect meal based diets for clownfish: Biometric, histological, spectroscopic, biochemical and molecular implications, Aquaculture, 498, 1-11.https://doi.org/10.1016/j.aquaculture.2018.08.018

    Article  CAS  Google Scholar 

  • Vidal, T.Z.B., Fontes, D.O., Ferreira, F., Godinho, R.M., Silva, M.A. and Corrêa, G.S.S., 2015. Teor de metionina+cistina para codornas de corte do nascimento aos 21 dias de idade, Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 67 (1), 242-248.https://doi.org/10.1590/1678-7018

    Article  CAS  Google Scholar 

  • Visscher, C., Middendorf, L., Günther, R., Engels, A., Leibfacher, C., Möhle, H., Düngelhoef, K., Weier, S., Haider, W. and Radko, D., 2017. Fat Content, Fatty Acid Pattern and Iron Content in Livers of Turkeys with Hepatic Lipidosis, Lipids in Health and Disease, 16 (1), 1–10.https://doi.org/10.1186/s12944-017-0484-8

    Article  CAS  Google Scholar 

  • Zancanela, V., Furlan, A.C., Pozza, P. C., Marcato, S.M., Grieser, D.O., Stanquevis, C.E., Finco, E., Ferreira, M.F.Z. and Oliveira-Bruxel, T. M., 2017. Biometric viscera and blood parameters of meat quails supplemented with inorganic selenium and vitamin E, Revista Brasileira de Saúde e Produção Animal, 18, 560–575.https://doi.org/10.1590/S1519-99402017000400007. 30

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Universidade Federal de Minas Gerais.

Author information

Authors and Affiliations

Authors

Contributions

PDFS and CAJ conducted the experiment and wrote the manuscript. FF and RRW conceived the experiment and coordinated activities. RRW also analyzed the data. LBO, RE, and FOPL contributed to all laboratory analyses. All authors read and approved the manuscript.

Corresponding author

Correspondence to Raphael Rocha Wenceslau.

Ethics declarations

Ethics approval

This study was conducted in accordance with the Ethics Committee on The Use of Animals (CEUA) of the Universidade Federal de Minas Gerais under the protocol 136/2017.

Conflict of interest

The authors declare competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Freitas Soares, P.D., de Jesus, C.A., Ferreira, F. et al. Hematological and histopathological evaluation of meat-type quails fed Madagascar cockroach meal. Trop Anim Health Prod 54, 128 (2022). https://doi.org/10.1007/s11250-022-03118-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-022-03118-6

Keywords

Navigation