Skip to main content
Log in

Potential of Tunisian carob pulp as feed for ruminants: chemical composition and in vitro assessment

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

The nutritive value of the carob fruits harvested from ten different geographic regions of the North and the Center of Tunisia was assessed on the basis of chemical composition and in vitro rumen fermentation kinetic. Results showed that the chemical composition (ash, crude protein, fat, and sugar) of carob pods was highly influenced by geographic origin. Neutral detergent fiber varied from 24.37 to 35.58 g/100 g DM, acid detergent fiber from 13.24 to 25.15 g/100 g DM, and acid detergent lignin from 4.72 to 11.09 g/100 g DM. Total phenol, flavonoids, and condensed tannin contents varied from 2.55 to 6.84 g gallic acid equivalents (GAE)/100 g DM, from 74.89 to 276.51, and from 0.23 to 1.63 mg catechin equivalents (CE)/100 g DM, respectively. The samples varied widely in asymptotic gas production (66.6–86.34 ml/300 mg DM). The calculated metabolizable energy and digestible organic matter contents of carob pods ranged from 65.09 to 84.65% and 9.84 to 12.82 MJ/kg DM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Abaş, I., Özpinar, H., Kutay, H. C., Kahraman, R., & Eseceli, H. (2005). Determination of the metabolizable energy (ME) and net energy lactation (NEL) contents of some feeds in the Marmara Region by in vitro gas technique. Turkish Journal of Veterinary and Animal Sciences, 29(3), 751–757.

    Google Scholar 

  • Ammar, H., & Boubaker, A. (2005). Chemical composition, in vitro digestibility and kinetics of gas production of foliage of some Tunisian shrubs. Options Méditerranéennes, 359(67), 355–359.

    Google Scholar 

  • Arroyo-Lopez, C., Manolaraki, F., Saratsis, A., Saratsi, K., Stefanakis, A., Skampardonis, V. and Sotiraki, S., 2014. Anthelmintic effect of carob pods and sainfoin hay when fed to lambs after experimental trickle infections with Haemonchus contortus and Trichostrongylus colubriformis. Parasite, 21.

  • Avallone, R., Plessi, M., Baraldi, M., & Monzani, A. (1997). Determination of chemical composition of carob (Ceratonia siliqua): Protein, fat, carbohydrates, and tannins. Journal of Food Composition and Analysis, 10(2), 166–172.

    Article  CAS  Google Scholar 

  • Ayaz, F. A., Torun, H., Ayaz, S., Correia, P. J., Alaiz, M., Sanz, C., Grúz, J., & Strnad, M. (2007). Determination of chemical composition of anatolian carob pod (Ceratonia siliqua L.): Sugars, amino and organic acids, minerals and phenolic compounds. Journal of Food Quality, 30(6), 1040–1055.

  • Barak, S., & Mudgil, D. (2014). Author’s personal copy Locust bean gum : Processing , properties and food applications — A review.

  • Ben Othmen, K., Elfalleh, W., Lachiheb, B., & Haddad, M. (2019). Evolution of phytochemical and antioxidant activity of Tunisian carob (Ceratonia siliqua L.) pods during maturation. The EuroBiotech Journal, 3(3), 135–142.

  • Biner, B., Gubbuk, H., Karhan, M., Aksu, M., & Pekmezci, M. (2007). Sugar profiles of the pods of cultivated and wild types of carob bean (Ceratonia siliqua L.) in Turkey. Food Chemistry, 100(4), 1453–1455.

  • Bouabidi, H. (1996). Critères de caractérisation des fruits de quelques cultivars de palmier dattiers (Phoenix dactylifera L.) du sud tunisien. Ann. Inrat, 27, 69-78.

    Google Scholar 

  • Boufennara, S., Lopez, S., Bousseboua, H., Bodas, R., & Bouazza, L. (2012). Chemical composition and digestibility of some browse plant species collected from Algerian arid rangelands. Spanish Journal of Agricultural Research, 10(1), 88.

    Article  Google Scholar 

  • Cottyn, B. G., De Boever, J. L., & Vanacker, J. M. (1990). The estimation of nutritive value of dairy cattle feed. Archives of Animal Nutrition, 40(10), 969-980.

    CAS  PubMed  Google Scholar 

  • Dayani, O., Khezri, A., & Moradi, A. G. (2012). Determination of nutritive value of date palm by-products using in vitro and in situ measurements. Small Ruminant Research, 105(1–3), 122–125.

    Article  Google Scholar 

  • Dewanto, V., Xianzhong, W., Adom, K. K., & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50(10), 3010–3014.

    Article  CAS  Google Scholar 

  • France J, Dijkstra J, Dhanoa MS, Lopez S and Bannink A., (2000). Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: derivation of models and other mathematical considerations. Br J Nutr 83:143–150.

    Article  CAS  Google Scholar 

  • Gasmi-Boubaker, A, Kayouli, C., & Buldgen, A. (2005). In vitro gas production and its relationship to in situ disappearance and chemical composition of some Mediterranean browse species. Animal Feed Science and Technology, 123–124 Pa, 303–311.

  • Gasmi-Boubaker, A, Mosquera-Losada, M., & Boubaker, B. (2013). In vitro fermentation of diets incorporating carob pulp using inoculum from rabbit caecum. South African Journal of Animal Science, 43(1), 2–7.

    Google Scholar 

  • Getachew, G., Crovetto, G. M., Fondevila, M., Krishnamoorthy, U., Singh, B., Spanghero, M. and Kailas, M. M. (2002). Laboratory variation of 24 h in vitro gas production and estimated metabolizable energy values of ruminant feeds. Animal Feed Science and Technology, 102(1-4), 169-180.

    Article  Google Scholar 

  • Getachew, G., DePeters, E. J., Robinson, P. H., & Fadel, J. G. (2005). Use of an in vitro rumen gas production technique to evaluate microbial fermentation of ruminant feeds and its impact on fermentation products. Animal Feed Science and Technology, 123–124 Pa, 547–559.

  • Khlifa, M., Bahloul, A., & Kitane, S. (2013). Determination of chemical composition of carob pod (Ceratonia siliqua L) and its morphological study. Journal of Materials and Environmental Science, 4(3), 348–353.

    CAS  Google Scholar 

  • Krishnamoorthy, U., Soller, H., Steingass, H., & Menke, K. H. (1995). Energy and protein evaluation of tropical feedstuffs for whole tract and ruminal digestion by chemical analyses and rumen inoculum studies in vitro. Animal Feed Science and Technology, 52(3-4), 177-188.

    Article  CAS  Google Scholar 

  • Lee, M. J., Hwang, S. Y., & Chiou, P. W. S. (2000). Metabolizable energy of roughage in Taiwan. Small Ruminant Research, 36(3), 251-259.

    Article  CAS  Google Scholar 

  • Li, M., Zi, X., Zhou, H., Hou, G., & Cai, Y. (2014). Effects of sucrose, glucose, molasses and cellulase on fermentation quality and in vitro gas production of king grass silage. Animal Feed Science and Technology, 197, 206–212.

    Article  CAS  Google Scholar 

  • McSweeney, C. S., Palmer, B., McNeill, D. M., & Krause, D. O. (2001). Microbial interactions with tannins: Nutritional consequences for ruminants. Animal Feed Science and Technology, 91(1–2), 83–93.

    Article  CAS  Google Scholar 

  • Menke, K.H., Steingass, H., 1988. Estimation of energetic feed value obtained from 349 chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development. 28, 7-55.

    Google Scholar 

  • Muhammed, S. A. (1999). Anti-nutrient effects of plant polyphenolic compounds. PhD Thesis, University of Aberdeen.

  • Naumann, H. D., Tedeschi, L. O., Zeller, W. E., & Huntley, N. F. (2017). The role of condensed tannins in ruminant animal production: advances, limitations and future directions. Revista Brasileira de Zootecnia, 46, 929-949.

    Article  Google Scholar 

  • Obeidat, B. S., Alrababah, M. A., Alhamad, M. N., Gharaibeh, M. A., & Ishmais, M. A. A. (2012). Effects of feeding carob pods (Ceratonia siliqua L.) on nursing performance of Awassi ewes and their lambs. Small Ruminant Research, 105(1–3), 9–15.

  • Preston, T. R. (1995). Guidelines of evaluation of feed resources. In Tropical animal feeding - A manual for research workers.

  • Rtibi, K., Selmi, S., Grami, D., Amri, M., Eto, B., El-Benna, J., ... & Marzouki, L. (2017). Chemical constituents and pharmacological actions of carob pods and leaves (Ceratonia siliqua L.) on the gastrointestinal tract: A review. Biomedicine & Pharmacotherapy, 93, 522-528.

  • Sallam, S. M. A. (2005). Nutritive value assessment of the alternative feed resources by gas production and rumen fermentation in vitro. Res. J. Agric. Biol. Sci, 1(2), 200-209.

    Google Scholar 

  • Saratsis, A., Voutzourakis, N., Theodosiou, T., Stefanakis, A., & Sotiraki, S. (2016). The effect of sainfoin (Onobrychis viciifolia) and carob pods (Ceratonia siliqua) feeding regimes on the control of lamb coccidiosis. Parasitology research, 115(6), 2233-2242.

    Article  CAS  Google Scholar 

  • Sigge, G. O., lipumbu, L., & Britz, T. J. (2011). Proximate composition of carob cultivars growing in South Africa. South African Journal of Plant and Soil, 28(1), 17–22.

    Article  CAS  Google Scholar 

  • Sun, B., Ricardo-da-Silva, J. M., & Spranger, I. (1998). Critical Factors of Vanillin Assay for Catechins and Proanthocyanidins. Journal of Agricultural and Food Chemistry, 46(10), 4267–4274.

    Article  CAS  Google Scholar 

  • Tayengwa, T., & Mapiye, C. (2018). Citrus and winery wastes: promising dietary supplements for sustainable ruminant animal nutrition, health, production, and meat quality. Sustainability, 10(10), 3718.

    Article  CAS  Google Scholar 

  • Tous, J., Romero, A., & Batlle, I. (2013). The carob tree: Botany, horticulture, and genetic resources. Horticultural Reviews, 41(500 mm), 385–454.

  • Umucalilar, H. D., Coşkun, B., & Gülşen, N. (2002). In situ rumen degradation and in vitro gas production of some selected grains from Turkey. Journal of animal physiology and animal nutrition, 86(9‐10), 288-297.

    Article  CAS  Google Scholar 

  • Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583–3597.

    Article  Google Scholar 

  • Vekiari, S. A., Ouzounidou, G., Ozturk, M., & Görk, G. (2011). Variation of quality characteristics in Greek and Turkish carob pods during fruit development. Procedia - Social and Behavioral Sciences, 19, 750–755.

    Article  Google Scholar 

  • Woods, V. B., O’Mara, F. P., & Moloney, A. P. (2003). The nutritive value of concentrate feedstuffs for ruminant animals Part I: In situ ruminal degradability of dry matter and organic matter. Animal Feed Science and Technology, 110(1–4), 111–130.

    Article  CAS  Google Scholar 

  • Youssef, M. K. E., El-Manfaloty, M. M., & Ali, H. M. (2013). Assessment of proximate chemical composition, nutritional status, fatty acid composition and phenolic compounds of carob (Ceratonia siliqua L.). Food and Public Health, 3(6), 304–308.

Download references

Funding

This work was supported financially by Ecosystems and Aquatic Resource Unit (INAT) assigned by the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Contributions

RA designed the research, conducted the experiment and all analyses, analyzed data, and wrote the manuscript. NM and HB, the doctoral student’s tutors, checked the manuscript and made the corrections. CD, KA, and RA made statistical analyses. All the authors have read and approved the final paper.

Corresponding author

Correspondence to Amira Richane.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All the authors were aware regarding participation and publications.

Consent for publication

All the authors were aware regarding participation and publications.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richane, A., Ismail, H.B., Darej, C. et al. Potential of Tunisian carob pulp as feed for ruminants: chemical composition and in vitro assessment. Trop Anim Health Prod 54, 58 (2022). https://doi.org/10.1007/s11250-022-03071-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-022-03071-4

Keywords

Navigation