Skip to main content
Log in

Effects of vegetable oil supplementation on rumen fermentation and microbial population in ruminant: a review

  • Reviews
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Understanding the nature of ruminant nutrition and digestion is essential to improve feeding management and animal production. Among many approaches, manipulating ruminant nutrition and fermentation through feed supplementation is being practised and researched. Over the last decade, the utilization of vegetable oils in feed formulation and their effects on various aspects of ruminants have been reported by many researchers. It is important to understand the lipid metabolism in ruminants by microorganisms because it affects the quality of ruminant-derived products such as meat and milk. Majority of vegetable oil supplementation could reduce rumen protozoa population in ruminants due to the effects of medium-chain fatty acids (FAs). However, vegetable oil also contains unsaturated FAs that are known to have a negative effect on cellulolytic bacteria which could show inhibitory effects of the fibre digestion. In this paper, the physiology of nutrient digestion of ruminants is described. This paper also provides a current review of studies done on improvement and modification of rumen fermentation and microbial population through vegetable oil supplementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code availability

Not applicable.

References

  • Abubakr, A.R., Alimon, A.R., Yaakub, H., Abdullah, N. and Ivan, M., 2013. Digestibility, rumen protozoa, and ruminal fermentation in goats receiving dietary palm oil by-products. Journal of the Saudi Society of Agricultural Sciences, 12, 147-154.

    Article  Google Scholar 

  • Agarwal, N., Kamra, D.N. and Chaudhary, L.C., 2015. Rumen microbial ecosystem of domesticated ruminants. In: A.K. Puniya, R. Singh and D.N. Kamra (eds), Rumen Microbiology: From Evolution to Revolution (New Delhi; Springer), 17–30.

  • Anantasook, N., Wanapat, M., Cherdthong, A. and Gunun, P., 2013. Effect of plants containing secondary compounds with palm oil on feed intake, digestibility, microbial protein synthesis and microbial population in dairy cows. Asian-Australasian Journal of Animal Sciences, 26, 820-826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajjalieh, N., 2004. Proteins from oilseeds. Proceedings Protein Sources for the Animal Feed Industry-Expert Consultation and Workshop, Bangkok, 2004, 141-159.

    Google Scholar 

  • Bayat, A.R., Tapio, I., Vilkki, J., Shingfield, K.J. and Leskinen, H., 2018. Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield. Journal of Dairy Science, 101(2), 1136-1151.

    Article  CAS  PubMed  Google Scholar 

  • Benchaar, C., Romero-Pérez, G.A., Chouinard, P.Y., Hassanat, F., Eugene, M., Petit, H.V. and Côrtes, C., 2012. Supplementation of increasing amounts of linseed oil to dairy cows fed total mixed rations: Effects on digestion, ruminal fermentation characteristics, protozoal populations, and milk fatty acid composition. Journal of Dairy Science, 95, 4578-4590.

    Article  CAS  PubMed  Google Scholar 

  • Bhatt, R.S., Sahoo, A., Shinde, A.K. and Karim, S.A., 2013. Change in body condition and carcass characteristics of cull ewes fed diets supplemented with rumen bypass fat. Livestock Science, 157, 132–140.

    Article  Google Scholar 

  • Bianchi, A.E., Macedo, V.D.P., Silva, A.S.D., Silveira, A.L.F.D., Hill, J.A.G., Zortéa, T., Rossi, R.M. and Batista, R., 2018. Effect of the addition of protected fat from palm oil to the diet of dairy sheep. Revista Brasileira de Zootecnia, 47, 265-276.

    Article  Google Scholar 

  • Czerkawski, J.W., Blaxter, K.L., Wainman, F.W., 2007. The effect of linseed oil and of linseed oil fatty acids incorporated in the diet on the metabolism of sheep. British Journal of Nutrition, 20, 485–494.

    Article  Google Scholar 

  • da Mata, B.C., Rodriguez, N.M., Morenz, M.J.F., de Miranda Gomide, C.A., Martins, C.E., Paciullo, D.S.C., da Gama, M.A.S., and Lopes, F.C.F., 2018. Fatty acid composition of milk from Holstein x Gyr cows grazing on marandu grass supplemented with concentrate containing sunflower oil. Embrapa Gado de Leite-Artigo em periódico indexado, 39, 2581-2596.

    Google Scholar 

  • Enjalbert, F., Nicot, M.C., Griess, D., Vernay, M. and Moncoulon, R., 1994. Effect of different forms of polyunsaturated fatty acids on duodenal and serum fatty acid profiles in sheep. Canadian Journal of Animal Science, 74(4), 595-600.

    Article  CAS  Google Scholar 

  • Ferlay, A., Chilliard, Y. and Doreau, M., 1992. Effects of calcium salts differing in fatty acid composition on duodenal and milk fatty acid profiles in dairy cows. Journal of the Science of Food and Agriculture, 60(1), 31-37.

    Article  CAS  Google Scholar 

  • Girard, V. and Hawke, J.C., 1978. The role of Holotrichs in the metabolism of dietary linoleic acid in the rumen. Biochimica et Biophysica Acta, 528, 17-27.

    Article  CAS  PubMed  Google Scholar 

  • Girón, J.E.P., Restrepo, M.L.P. and Fornaguera, J.E.C., 2016. Supplementation with corn oil and palm kernel oil to grazing cows: ruminal fermentation, milk yield, and fatty acid profile. Revista Brasileira de Zootecnia, 45, 693-703.

    Article  Google Scholar 

  • Goetsch, A.L., Zeng, S.S. and Gipson, T.A., 2011. Factors affecting goat milk production and quality. Small Ruminant Research, 101, 55-63.

    Article  Google Scholar 

  • Harfoot, C.G. and Hazlewood, G.P., 1997. Lipid metabolism in the rumen. In: P.N. Hobson (ed), The Rumen Microbial Ecosystem (London; Elsevier), 382–426.

  • Hegarty, R.S., 1999. Reducing rumen methane emissions through elimination of rumen protozoa. Crop and Pasture Science, 50, 1321-1328.

    Article  Google Scholar 

  • Henderson, G., Cox, F., Ganesh, S., Jonker, A. and Young, W., 2015. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific Reports, 5, 14567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hook, S.E., Wright, A.D.G. and McBride, B.W., 2010. Methanogens: methane producers of the rumen and mitigation strategies. Archaea, 945785.

  • Ivan, M., Petit, H.V., Chiquette, J. and Wright, A.D., 2013. Rumen fermentation and microbial population in lactating dairy cows receiving diets containing oilseeds rich in C-18 fatty acids. British Journal of Nutrition, 109, 1211-1218.

    Article  CAS  PubMed  Google Scholar 

  • Jalč, D., Potkański, A., Szumacher-Strabel, M., Kowalczyk, J. and Cieślak, A., 2006. The effect of a high concentrate diet and diferent fat sources on rumen fermentation in vitro. Journal of Animal and Feed Sciences, 15, 137–140.

    Article  Google Scholar 

  • Jenkins, T.C. (1993) Lipid metabolism in the rumen. J Dairy Sci 76, 3851-3863.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, T.C. and McGuire, M.A., 2006. Major advances in nutrition: Impact on milk composition. Journal of Dairy Science, 89, 1302-1310.

    Article  CAS  PubMed  Google Scholar 

  • Khafipour, E., Li, S., Tun, H.M., Derakhshani, H., Moossavi, S. and Plaizier, J.C., 2016. Effects of grain feeding on microbiota in the digestive tract of cattle. Animal Frontiers, 6, 13–19.

    Article  Google Scholar 

  • Khotijah, L., Pandiangan, E.I., Astuti, D.A. and Wiryawan, K.G., 2017. Effect of sunflower oil supplementation as unsaturated fatty acid source on rumen fermentability and performance of lactating Garut ewes. Journal of the Indonesian Tropical Animal Agriculture, 42, 185-193.

    Article  Google Scholar 

  • Kim, E.J., Huws, S.A., Lee, M.R.F., Wood, J.D., Muetzel, S.M., Wallace, R.J. and Scollan, N.D., 2008. Fish oil increases the duodenal flow of long chain polyunsaturated fatty acids and trans-11 18:1 and decreases 18:0 in steers via changes in the rumen bacteria community. The Journal of Nutrition, 138, 889–896.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y.J., Liu, R.H., Rychlik, J.L., and Russell, J.B., 2002. The enrichment of a ruminal bacterium (Megasphaera elsdenii YJ‐4) that produces the trans‐10, cis‐12 isomer of conjugated linoleic acid. Journal of Applied Microbiology, 92, 976-982.

    Article  CAS  PubMed  Google Scholar 

  • Kirovski, D., Blond, B., Katić, M., Marković, R. and Šefer, D., 2015. Milk yield and composition, body condition, rumen characteristics, and blood metabolites of dairy cows fed diet supplemented with palm oil. Chemical and Biological Technologies in Agriculture, 2, 6-10.

    Article  CAS  Google Scholar 

  • Kongmun, P., Wanapat, M., Pakdee, P., Navanukraw, C. and Yu, Z., 2011. Manipulation of rumen fermentation and ecology of swamp buffalo by coconut oil and garlic powder supplementation. Livestock Science, 135, 84-92.

    Article  Google Scholar 

  • Liu, S.J., Bu, D.P., Wang, J.Q., Liu, L., Liang, S., Wei, H.Y., Zhou, L., Li, D. and Loor, J.J., 2012. Effect of incremental levels of fish oil supplementation on specific bacterial populations in bovine ruminal fluid. Journal of Animal Physiology and Animal Nutrition, 96, 9-16.

    Article  CAS  PubMed  Google Scholar 

  • Lourenço, M., Ramos-Morales, E. and Wallace, R.J., 2010. The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal, 4, 1008-1023.

    Article  PubMed  CAS  Google Scholar 

  • Macedo, F.L., Batistel, F., de Souza, J., Chagas, L.J. and Santos, F.A.P., 2016. Supplementation with Ca salts of soybean oil interacts with concentrate level in grazing dairy cows: intake, ingestive behavior, and ruminal parameters. Tropical Animal Health and Production, 48, 1593–1598.

    Article  PubMed  Google Scholar 

  • Maia, M.R., Chaudhary, L.C., Figueres, L. and Wallace, R.J., 2007. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek, 91, 303–314.

  • Majewska, M.P., Miltko, R., Bełżecki, G., Skomiał, J., Kowalik, B., 2017. Supplementation of rapeseed and linseed oils to sheep rations: Effects on ruminal fermentation characteristics and protozoal populations. Czech Journal of Animal Science, 62, 527−538.

  • Mao, H.L., Wang, J.K., Zhou, Y.Y. and Liu, J.X., 2010. Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livestock Science, 129, 56-62.

    Article  Google Scholar 

  • Marín, A.M., Gómez-Cortés, P., Castro, A.G., Juárez, M., Alba, L.P., Hernández, M.P. and De la Fuente, M.A., 2012. Short communication: Linear discriminant analysis and type of oil added to dairy goat diets. Journal of Dairy Science, 95, 4045-4049.

    Article  CAS  Google Scholar 

  • Matsuba, K., Padlom, A., Khongpradit, A., Boonsaen, P., Thirawong, P., Sawanon, S., Suzuki, Y., Koike, S. and Kobayashi, Y., 2019. Selection of plant oil as a supplemental energy source by monitoring rumen profiles and its dietary application in Thai crossbred beef cattle. Asian-Australasian Journal of Animal Sciences, 32, 1511-1520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald, P., Edwards, R.A., Greenhalgh, J.F.D., Morgan, C.A., Sinclair, L.A., Wilkinson, R.G., 2010. Animal Nutrition 7th Edition. London: Pearson Education.

    Google Scholar 

  • Ngidi, M.E., Loerch, S.C., Fluharty, F.L. and Palmquist, D.L., 1990. Effects of calcium soaps of long-chain fatty acids on feedlot performance, carcass characteristics and ruminal metabolism of steers. Journal of Animal Science, 68, 2555–2565.

    Article  CAS  PubMed  Google Scholar 

  • Nur Atikah, I., Alimon, A.R., Yaakub, H., Abdullah, N., Jahromi, M.F., Ivan, M. and Samsudin, A.A., 2018. Profiling of rumen fermentation, microbial population and digestibility in goats fed with dietary oils containing different fatty acids. BMC Veterinary Research, 14, 344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paillard, D., McKain, N., Rincon, M.T., Shingfield, K.J., Givens, D.I. and Wallace, R.J., 2007. Quantification of ruminal Clostridium proteoclasticum by real‐time PCR using a molecular beacon approach. Journal of Applied Microbiology, 103, 1251-1261.

    Article  CAS  PubMed  Google Scholar 

  • Parveez, G.K.A., Hishamuddin, E., Loh, S.K., Ong-Abdullah, M., Salleh, K.M., Bidin, M.N.I.Z., Sundram, S., Hasan, Z.A.A. and Idris, Z., 2020. Oil Palm Economic Performance in Malaysia and R&D Progress in 2019. Journal of Oil Palm Research, 32, 159-190.

    Google Scholar 

  • Patra, A.K. and Yu, Z., 2013. Effects of coconut and fish oils on ruminal methanogenesis, fermentation, and abundance and diversity of microbial populations in vitro. Journal of Dairy Science, 96, 1782-92.

    Article  CAS  PubMed  Google Scholar 

  • Pitta, D.W., Indugu, N., Vecchiarelli, B., Rico, D.E. and Harvatine, K.J., 2018. Alterations in ruminal bacterial populations at induction and recovery from diet-induced milk fat depression in dairy cows. Journal of dairy science, 101(1), 295-309.

    Article  CAS  PubMed  Google Scholar 

  • Plascencia, A. and Zinn, R.A., 2018. Comparative effects of ‘solid’-fat sources as a substitute for yellow grease on digestion of diets for feedlot cattle. Animal Production Science, 59(8), 1520-1527.

    Article  CAS  Google Scholar 

  • Sitoresmi, P.D., Yusiati, L.M. and Hartadi, H., 2009. Pengaruh penambahan minyak kelapa, minyak biji bunga matahari, dan minyak kelapa sawit terhadap penurunan produksi metan di dalam rumen secara in vitro (The effect of addition coconut oil, sunflower seed oil, and palm olein on reducing ruminal methane production in vitro). Buletin Peternak, 33, 96-105.

    Article  Google Scholar 

  • Storm, E. and Ørskov, E.R., 1983. The nutritive value of rumen micro-organisms in ruminants: 1. Large-scale isolation and chemical composition of rumen micro-organisms. British Journal of Nutrition, 50, 463-470.

    Article  CAS  PubMed  Google Scholar 

  • Suksombat, W., Meeprom, C. and Mirattanaphrai, R., 2016. Performance, carcass quality and fatty acid profile of crossbred Wagyu beef steers receiving palm and/or linseed oil. Asian-Australasian Journal of Animal Sciences, 29, 1432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suphrap, N., Wachirapakorn, C., Thamrongyoswittayakul, C. and Wongnen, C., 2019. Effect of vegetable oil source supplementation on feed intake, nutrients digestibility and rumen biohydrogenation bacterial population in Thai Friesian dairy cows. Indian Journal of Animal Research, 53, 907-912.

    Google Scholar 

  • Takenaka, A. and Itabashi, H., 1995. Changes in the population of some functional groups of rumen bacteria including methanogenic bacteria by changing the rumen ciliates in calves. Journal of General and Applied Microbiology, 41, 377-387.

    Article  CAS  Google Scholar 

  • Tomkins, T. and Drackley, J.K., 2010. Applications of palm oil in animal nutrition. Journal of Oil Palm Research, 22, 835-845.

    CAS  Google Scholar 

  • Toprak, N.N., 2015. Do fats reduce methane emission by ruminants? - a review. Animal Science Papers and Reports, 33, 305–321.

    CAS  Google Scholar 

  • Ueda, K., Ferlay, A., Chabrot, J., Loor, J.J., Chilliard, Y. and Doreau, M., 2003. Effect of linseed oil supplementation on ruminal digestion in dairy cows fed diets with different forage: concentrate ratios. Journal of Dairy Science, 86, 3999–4007.

    Article  CAS  PubMed  Google Scholar 

  • Van Ranst, G., Fievez, V., Vandewalle, M., De Riek, J. and Van Bockstaele, E., 2009. In vitro study of red clover polyphenol oxidase activity, activation, and effect on measured lipase activity and lipolysis. Journal of Agricultural and Food Chemistry, 57, 6611-6617.

    Article  PubMed  CAS  Google Scholar 

  • Vargas, J.E., Andrés, S., López-Ferreras, L., Snelling, T.J., Yáñez-Ruíz, D.R., García-Estrada, C. and López, S., 2020a. Dietary supplemental plant oils reduce methanogenesis from anaerobic microbial fermentation in the rumen. Scientific Reports, 10, 1-9.

    Article  CAS  Google Scholar 

  • Vargas, J.E., Andrés, S., López-Ferreras, L. and López, S., 2020b. Effects of supplemental plant oils on rumen bacterial community profile and digesta fatty acid composition in a continuous culture system (RUSITEC). Anaerobe, 61, 102143.

  • Voigt, J., Kuhla, S., Gaafar, K., Derno, M. and Hagemeister, H., 2006. Digestibility of rumen protected fat in cattle. Slovak Journal of Animal Science, 39, 16-19.

    Google Scholar 

  • Wallace, R.J., 1985. Synergism between different species of proteolytic rumen bacteria. Current Microbiology, 12, 59–63.

    Article  Google Scholar 

  • Wallace, R.J., Chaudhary, L.C., McKain, N., McEwan, N.R., Richardson, A.J., Vercoe, P.E., Walker, N.D. and Paillard, D., 2006. Clostridium proteoclasticum: a ruminal bacterium that forms stearic acid from linoleic acid. FEMS Microbiol Lett 265, 195-201.

    Article  CAS  Google Scholar 

  • Wanapat, M., Mapato, C., Pilajun, R. and Toburan, W., 2011. Effects of vegetable oil supplementation on feed intake, rumen fermentation, growth performance, and carcass characteristic of growing swamp buffaloes. Livestock Science, 135, 32-37.

    Article  Google Scholar 

  • Williams, A.G. and Coleman, G.S., 2012. The rumen protozoa. New York: Springer.

    Google Scholar 

  • Wu, Z., Ohajuruka, O.A. and Palmquist, D.L., 1991. Ruminal synthesis, biohydrogenation, and digestibility of fatty acids by dairy cows. Journal of Dairy Science, 74(9), 3025-3034.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S.L., Bu, D.P., Wang, J.Q., Hu, Z.Y., Li, D., Wei, H.Y., Zhou, L.Y. and Loor, J.J., 2009. Soybean oil and linseed oil supplementation affect profiles of ruminal microorganisms in dairy cows. Animal, 3, 1562-1569.Yoshimura, E.H., Santos, N.W., Machado, E., Agustinho, B.C., Pereira, L.M., de Aguiar, S.C., Franzolin, R., Gasparino, E., dos Santos, G.T. and Zeoula, L.M., 2018. Effects of dairy cow diets supplied with flaxseed oil and propolis extract, with or without vitamin E, on the ruminal microbiota, biohydrogenation, and digestion. AAnimal Feed Science and Technology, 241, 163-172.

    Google Scholar 

  • Zheng, H.C., Liu, J.X., Yao, J.H., Yuan, Q., Ye, H.W., Ye, J.A. and Wu, Y.M. (2005). Effects of dietary sources of vegetable oils on performance of high-yielding lactating cows and conjugated linoleic acids in milk. Journal of Dairy Science, 88, 2037–2042.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Director-General of Malaysian Palm Oil Board (MPOB) for permission to publish this article.

Author information

Authors and Affiliations

Authors

Contributions

Drafting the manuscript: NAI. Contribution to the concept or design of the manuscript: NAI, SCLC, SM. Interpreting the relevant literature: NAI, SCLC, WNWM, AMN, MAF, SM. Critical revision for important intellectual content of the manuscript: NAI, ARA, HY, AAS, SCLC, WNWM, AMN, MAF, SM. Final editing and improving of the version to be published: NAI, ARA, HY, AAS, SCLC, WNWM, AMN, MAF, SM. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Ibrahim Nur Atikah.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have checked and approved the manuscript for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, N.A., Alimon, A.R., Yaakub, H. et al. Effects of vegetable oil supplementation on rumen fermentation and microbial population in ruminant: a review. Trop Anim Health Prod 53, 422 (2021). https://doi.org/10.1007/s11250-021-02863-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-021-02863-4

Keywords

Navigation