Skip to main content

Behavioural, physiological, neuro-endocrine and molecular responses of cattle against heat stress: an updated review

Abstract

The negative impact of heat stress on cattle growth, development, reproduction and production has been quite alarming across the world. Climate change elevates earth surface temperature which exacerbates the wrath of heat stress on cattle. Moreover, cattle in tropical and sub-tropical countries are most commonly affected by the menace of heat stress which severely wane their production and productivity. In general, cattle exhibit various thermoregulatory responses such as behavioural, physiological, neuro-endocrine and molecular responses to counteract the terrible effects of heat stress. Amongst the aforementioned thermoregulatory responses, behavioural, physiological and neuro-endocrine responses are regarded as most conventional and expeditious responses shown by cattle against heat stress. Furthermore, molecular responses serve as the major adaptive response to attenuate the harmful effects of heat stress. Therefore, present review highlights the significance of behavioural, physiological, neuro-endocrine and molecular responses which act synergistically to combat the deleterious effects of heat stress thereby confer thermo-tolerance in cattle.

This is a preview of subscription content, access via your institution.

Fig. 1

Data availability

Not applicable

Abbreviations

3βHSD:

3-Beta-hydroxysteroid dehydrogenase

ACTH:

Adreno-corticotropic hormone

ADH:

Anti-diuretic hormone

ARC:

Arcuate nuclei

BGTHI:

Black globe temperature humidity index

CART:

Cocaine and amphetamine-regulated transcript

CBG:

Corticosteroid-binding globulin

CYP11A1:

Cholesterol side-chain cleavage enzyme

CYP19A1:

Aromatase enzyme

CRH:

Corticotropin-releasing hormone

DMI:

Dry matter intake

E2 :

17β-estradiol

EEM:

Early embryonic mortality

ETI:

Equivalent temperature index

FSH:

Follicle-stimulating hormone

GCs:

Granulosa cells

GH:

Growth hormone

GHRH:

Growth hormone–releasing hormone

GnRH:

Gonadotropin-releasing hormone

HF:

Holstein Friesian

HLI:

Heat load index

HOST:

Hypo-osmotic swelling test

HPA:

Hypothalamo-pituitary adrenal axis

HPG:

Hypothalamo-pituitary gonadal axis

HPT:

Hypothalamo-pituitary thyroid axis

HR:

Heart rate

HRV:

Heart rate variability

HSFs:

Heat shock factors

HSPs:

Heat shock proteins

IGF-I:

Insulin-like growth factor I

IGF-II:

Insulin-like growth factor II

IPCC:

Inter-governmental panel on climate change

KF:

Karan Fries

LH:

Luteinizing hormone

LHA:

Lateral hypothalamic area

MRP:

Maternal recognition of pregnancy

PBMCs:

Peripheral blood mononuclear cells

POMC:

Proopiomelanocortin

P4 :

Progesterone

PGF2α:

Prostaglandin F2α

PR:

Pulse rate

PVN:

Para-ventricular nuclei

ROS:

Reactive oxygen species

RR:

Respiration rate

RT:

Rectal temperature

SAM:

Sympathetic adrenal medullary axis

SON:

Supra-optic nuclei

SR:

Sweating rate

ST:

Skin temperature

StAR:

Steroidogenic acute regulatory protein

T3 :

Tri-iodo thyronine

T4 :

Thyroxine

THI:

Temperature humidity index

TNZ:

Thermo-neutral zone

TRH:

Thyrotropin-releasing hormone

TSH:

Thyroid-stimulating hormone

UCT:

Upper critical temperature

WI:

Water intake

References

  • Abdel-Samee, A.M., Habeeb, A.A.M., Kamal, T.H., Abdel-Razik, M.A., 1989. The role of urea and mineral mixture supplementation in improving productivity of heat-stressed Friesian calves in the sub-tropics. Proceedings of 3rd Egyptian-British Conference on Animal, Fish and Poultry Production, Alexandria University, Egypt, 2, 637-641.

  • Abilay, T.A., Mitra, R., Johnson, H.D., 1975. Plasma cortisol and total progestin levels in Holstein steers during acute exposure to high environmental temperature (42°C) conditions, Journal of Animal Science, 41, 113-118.

    CAS  PubMed  Article  Google Scholar 

  • Abilay, T.A., Johnson, H.D., Madam, L.M., 1975a. Influence of environmental heat on peripheral plasma progesterone and cortisol during the bovine oestrus cycle, Journal of Dairy Science, 58, 1836-1840.

    CAS  PubMed  Article  Google Scholar 

  • Aengwanich, W., Kongbuntad, W., Boonsorn, T., 2011. Effects of shade on physiological changes, oxidative stress, and total antioxidant power in Thai Brahman cattle, International Journal of Biometeorology, 55, 741-748.

    PubMed  Article  Google Scholar 

  • Afsal, A., Sejian, V., Bagath, M., Krishnan, G., Devaraj, C., Bhatta, R., 2018. Heat Stress and Livestock Adaptation: Neuro-endocrine Regulation, International Journal of Veterinary and Animal Medicine, 1, 108.

    Google Scholar 

  • Aggarwal, A., Upadhyay, R., 2013. Heat Stress and Hormones (eds) Aggarwal A, Upadhyay R In: Heat Stress and Animal Productivity, 27-51.

  • Ahmad, N., Schrick, F.N., Butcher, R.L., Inskeep, E.K., 1995. Effect of persistent follicles on early embryonic losses in beef cows, Biology of Reproduction, 52, 1129-1135.

    CAS  PubMed  Article  Google Scholar 

  • Ahmad, M., Bhatti, J.A., Abdullah, M., Javed, K., Ali, M., Rashid, G., Uddin, R., Badini, A.H., Jehan, M., 2018. Effect of ambient management interventions on the production and physiological performance of lactating Sahiwal cattle during hot dry summer, Tropical Animal Health and Production, 50, 1249-1254.

    PubMed  Article  Google Scholar 

  • Ahmed, M.M.M., El-Amin, A.I., 1997. Effect of hot dry summer tropical climate on forage intake and milk yield in Holstein-Friesian and indigenous Zebu cows in Sudan, Journal of Arid Environments, 35, 737-745.

    Article  Google Scholar 

  • Alamer, M., 2011. The role of prolactin in thermoregulation and water balance during heat stress in domestic ruminants, Asian Journal of Animal and Veterinary Advances, 6, 1153-1169.

    CAS  Article  Google Scholar 

  • Al-Katanani, Y.M., Webb, D.W., Hansen, P.J., 1999. Factors affecting seasonal variation in 90-day non return rate to first service in lactating Holstein cows in a hot climate, Journal of Dairy Science, 82, 2611-2616.

    CAS  PubMed  Article  Google Scholar 

  • Al-Katanani, Y.M., Paula-Lopes, F.F., Hansen, P.J., 2002. Effect of Season and Exposure to Heat Stress on Oocyte Competence in Holstein Cows, Journal of Dairy Science, 85, 390-396.

    CAS  PubMed  Article  Google Scholar 

  • Allen, T.E., Bligh, J., 1969. A comparative study of the temporal patterns of cutaneous water vapor loss from some domesticated mammals with epithelial sweat glands, Comparative Biochemistry and Physiology, 31, 347-363.

    CAS  PubMed  Article  Google Scholar 

  • Allen, J.D., Hall, L.W., Collier, R.J., Smith, J.F., 2015. Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress, Journal of Dairy Science, 98, 118-127.

    CAS  PubMed  Article  Google Scholar 

  • Alvarez, M.B., Johnson, J.D., 1973. Environmental heat exposure on cattle plasma catecholamine and glucocorticoids, Journal of Dairy Science, 56, 189-194.

    CAS  PubMed  Article  Google Scholar 

  • Amundson, J.L., Mader, T.L., Rasby, R.J., Hu, Q.S., 2005. Temperature and temperature–humidity index effects on pregnancy rate in beef cattle. In: Proceedings of 17th International Congress on Biometeorology, Deutscher Wetterdienst, Offenbach, Germany.

    Google Scholar 

  • Amundson, J.L., Mader, T.L., Rasby, R.J., Hu, Q.S., 2006. Environmental effects on pregnancy rate in beef cattle, Journal of Animal Science, 84:3415-3420.

    CAS  PubMed  Article  Google Scholar 

  • Ansell, R.H., 1981. Extreme Heat Stress in Dairy Cattle and its Alleviation: A Case Report. In: Environmental Aspects of Housing for Animal Protection, Clark, J.A. (Ed.), Butterworths, London, UK, 285-306.

    Chapter  Google Scholar 

  • Arias, R.A., Mader, T.L., 2011. Environmental factors affecting daily water intake on cattle finished in feedlots, Journal of Animal Science, 89, 245-251.

    CAS  PubMed  Article  Google Scholar 

  • Aritonang, S.B., Yuniati, R., Abinawanto, Imron M., Bowolaksono A., 2017. Physiology Response of the Indigenous Cattle Breeds to the Environment in West Sumbawa, Indonesia, AIP Conference Proceedings 1862, 030098. doi: https://doi.org/10.1063/1.4991202.

  • Attenberry, J.T., Johnson, H.D., 1969. Effect of environmental temperature, controlled feeding and fasting on rumen motility, Journal of Animal Science, 29, 734-737.

    Article  Google Scholar 

  • Badinga, L., Collier, R.J., Thatcher, W.W., Wilcox, C.J., 1985 Effects of climatic and management factors on conception rate of dairy cattle in subtropical environment, Journal of Dairy Science, 68, 78-85.

    CAS  PubMed  Article  Google Scholar 

  • Badinga, L., Thatcher, W.W., Diaz, T., Drost, M., Wolfenson, D., 1993. Effect of environmental heat stress on follicular development and steroidogenesis in lactating Holstein cows, Theriogenology, 39, 797-810.

    CAS  PubMed  Article  Google Scholar 

  • Baek, Y.C., Kim, M., Jeong, J.Y., Oh, Y.K., Lee, S.D., Lee, Y.K., Ji, S.Y., Choi, H., 2019. Effects of short term acute heat stress on physiological responses and heat shock proteins of Hanwoo steer (Korean cattle), Journal of Animal Reproduction and Biotechnology, 34, 173-182.

    Article  Google Scholar 

  • Banerjee, D., Ashutosh., 2011. Effect of thermal exposure on diurnal rhythms of physiological parameters and feed, water intake in Tharparkar and Karan Fries heifers, Biological Rhythm Research, 42, 39-51.

    Article  Google Scholar 

  • Baumgard, L.H., Rhoads, R.P., 2013. Effects of heat stress on post absorptive metabolism and energetic, Annual Review of Animal Biosciences, 1, 311-337.

    PubMed  Article  CAS  Google Scholar 

  • Beatty, D.T., Barnes, A., Taylor, E., Pethick, D., McCarthy, M., Maloney, S.K., 2006. Physiological responses of Bos taurus and Bos indicus cattle to prolonged, continuous heat and humidity, Journal of Animal Science, 84, 972-985.

    CAS  PubMed  Article  Google Scholar 

  • Beede, D.K., Collier, R.J., 1986. Potential nutritional strategies for intensively managed cattle during thermal stress, Journal of Animal Science, 62, 543-554.

    CAS  Article  Google Scholar 

  • Benyei, B., Gaspard, A., Barros, C.W.C., 2001. Changes in embryo production results and ovarian recrudescence during the acclimation to the semiarid tropics of embryo donor Holstein-Frisian cows raised in a temperate climate, Animal Reproduction Science, 68, 57-68.

    CAS  PubMed  Article  Google Scholar 

  • Bernabucci, U., Bani, P., Ronchi, B., Lacetera, N., Nardone, A., 1999. Influence of short- and long-term exposure to hot environment on rumen passage rate and diet digestibility by Friesian heifers, Journal of Dairy Science, 82, 967-973.

    CAS  PubMed  Article  Google Scholar 

  • Bernabucci, U., Lacetera, N., Basirico, L., Ronchi, B., Morera, P., Seren, E., Nardone, A., 2006. Hot season and BCS affect leptin secretion in periparturient dairy cows, Journal of Dairy Science, 89, 348.

    Article  Google Scholar 

  • Bernabucci, U., Lacetera, N., Baumgard, L.H., Rhoads, R.P., Ronchi, B., Nardone, A., 2010. Metabolic and hormonal acclimation to heat stress in domesticated ruminants, Animal, 4, 1167-1183.

    CAS  PubMed  Article  Google Scholar 

  • Bhan, C., Singh, S.V., Hooda, O.K., Upadhyay, R.C., Mangesh, V., 2012. Influence of temperature variability on physiological, hematological and biochemical profile of growing and adult Sahiwal cattle, Journal of Environmental Research and Development, 7, 986-994.

    Google Scholar 

  • Bhan, C, Singh, S.V., Hooda, O.K., Upadhyay, R.C., Beenam, B., 2013. Influence of temperature variability on physiological, haematological and biochemical profiles of growing and adult Karan Fries cattle, Indian Journal of Animal Science, 83, 1090-1096.

    CAS  Google Scholar 

  • Bharati, J., Dangi, S.S., Mishra, S.R., Chouhan, V.S., Verma, V., Shankar, O., Bharti, M.K., Paul, A., Mahato, D.K., Rajesh, G., Singh, G., Maurya, V.P., Bag, S., Kumar, P., Sarkar, M., 2017. Expression analysis of Toll like receptors and interleukins in Tharparkar cattle during acclimation to heat stress exposure, Journal of Thermal Biology, 65, 48-56.

    CAS  PubMed  Article  Google Scholar 

  • Bharati, J., Dangi, S.S., Chouhan, V.S., Mishra, S.R., Bharti, M.K., Verma, V., Shankar, O., Yadav, V.P., Das, K., Paul, A., Bag, S., Maurya, V.P., Singh, G., Kumar, P., Sarkar, M., 2017a. Expression dynamics of HSP70 during chronic heat stress in Tharparkar cattle, International Journal of Biometeorology, 61, 1017-1027.

    PubMed  Article  Google Scholar 

  • Bianca, W., 1962. Relative importance of dry and wet bulb temperatures in causing heat stress in cattle, Nature, 195, 251-252.

    CAS  PubMed  Article  Google Scholar 

  • Biggers, B.G., Buchanan, D.S., Geisert, R.D., Wetteman, R.P., 1987. Effects of Heat Stress on Early Embryonic Development in the Beef Cow, Journal of Animal Science, 64, 1512-1518.

    CAS  PubMed  Article  Google Scholar 

  • Boehmer, B.H., Pye, T.A., Wettemann, R.P., 2015. Ruminal temperature as a measure of body temperature of beef cows and relationship with ambient temperature, The Professional Animal Scientist, 31, 387-393.

    Article  Google Scholar 

  • Bond, T.E., Kelly, C.F., Ittner, N.R., 1954. Radiation studies of painted shade materials, Agricultural Engineering, 36, 389-392.

    Google Scholar 

  • Boni, R., 2019. Heat stress, a serious threat to reproductive function in animals and humans, Molecular Reproduction and Development, 86, 1307-1323.

    CAS  PubMed  Article  Google Scholar 

  • Breen, K.M., Karsch, F.J., 2006. New insights regarding glucocorticoids, stress and gonadotropin suppression, Frontiers in Neuroendocrinology, 27, 233-245.

    CAS  PubMed  Article  Google Scholar 

  • Bridges, P.J., Brusie, M.A., Fortune, J.E., 2005. Elevated temperature (heat stress) in vitro reduces androstenedione and estradiol and increases progesterone secretion by follicular cells from bovine dominant follicles, Domestic Animal Endocrinology, 29, 508-522.

    CAS  PubMed  Article  Google Scholar 

  • Brown-Brandl, T.M., Nienaber, J.A., Eigenberg, R.A., Hahn, G.L., Freetly, H., 2003. Thermoregulatory responses of feeder cattle, Journal of Thermal Biology, 28, 149-157.

    Article  Google Scholar 

  • Brown-Brandl, T.M., Eigenberg, R.A., Hahn, G.L., Nienaber, J.A., Mader, T.L., Spiers, D.E., Parkhurst, A.M., 2005. Analyses of thermoregulatory responses of feeder cattle exposed to simulated heat waves, International Journal of Biometeorology, 49, 285-296.

    CAS  PubMed  Article  Google Scholar 

  • Bulbul, B., Ataman, M.B., 2009. The effect of some seasonal conditions on estrus occurrence in cows, Archiv Tierzucht, 52, 459-465.

    Google Scholar 

  • Cardoso, C., Peripolli, V., Amador, S., Brandao, E., Esteves, G., Sousa, C., Franca, M., Gonçalves, F., Barbosa, F., Montalvao, T., 2015. Physiological and thermographic response to heat stress in zebu cattle, Livestock Science, 182, 83-92.

    Article  Google Scholar 

  • Cavallari de Castro, F., Leal, C.L.V., Roth, Z., Hansen, P.J., 2019. Effects of melatonin on production of reactive oxygen species and developmental competence of bovine oocytes exposed to heat shock and oxidative stress during in vitro maturation, Zygote, 27, 180-186.

    Article  CAS  Google Scholar 

  • Cavestany, D., El-Whishy, A.B., Foot, R.H., 1985. Effect of season and high environmental temperature on fertility of Holstein cattle, Journal of Dairy Science, 68, 1471-1478.

    CAS  PubMed  Article  Google Scholar 

  • Chaiyabutr, N., Chanpongsang, S., Suadsong, S., 2008. Effects of evaporative cooling on the regulation of body water and milk production in crossbred Holstein cattle in a tropical environment, International Journal of Biometeorology, 52, 575-585.

    CAS  PubMed  Article  Google Scholar 

  • Chaiyabutr, N., Chanchai, W., Boonsanit, D., Sitprija, S., Chan-pongsang, S., 2011. Different responses of oxidative stress index in the plasma of crossbred Holstein cattle during cooling and supplemental recombinant bovine somatotropin, Journal of Animal and Veterinary Advances, 10, 1045-1053.

    CAS  Article  Google Scholar 

  • Chakravarthi, K., Bidarkar, D.K., Ramesh Gupta, B., Rao, G.N., Sudhakar, K., Babu Rao, K., 2004. Drought performance of Ongole bulls under thermal stress conditions, Indian Journal of Animal Science, 74, 119-121.

    Google Scholar 

  • Chen, S., Wang, J., Peng, D., Li, G., Chen, J., Gu, X., 2018. Exposure to heat-stress environment affects the physiology, circulation levels of cytokines, and microbiome in dairy cows, Scientific Reports, 8, 14606.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Church, J.S., Hegadoren, P.R., Paetkau, M.J., Miller, C.C., Regev-Shoshani, G., Schaefer, A.L., Schwartzkopf-Genswein, K.S., 2014. Influence of environmental factors on infrared eye temperature measurements in cattle, Research in Veterinary Science, 96, 220-226.

    CAS  PubMed  Article  Google Scholar 

  • Coimbra, P.A.D., Filho, L.C.P.M., Hotzel, M.J., 2012. Effects of social dominance, water trough location and shade availability on drinking behaviour of cows on pasture, Applied Animal Behaviour Science, 139, 175-182.

    Article  Google Scholar 

  • Collier, R.J., Gebremedhin, K.G., 2015. Thermal biology of domestic animals, Annual Review of Animal Biosciences, 3, 513-532.

    PubMed  Article  Google Scholar 

  • Collier, R.J., Beede, D.K., Thatcher, W.W., Israel, L.A., Wilcox, C.J., 1982. Influences of environment and its modification on dairy animal health and production, Journal of Dairy Science, 65, 2213-2227.

    CAS  PubMed  Article  Google Scholar 

  • Collier, R.J., Dahl, G.E., Vanbaale, M.J., 2006. Major advances associated with environmental effects in dairy cattle, Journal of Dairy Science, 89, 1244-1253.

    CAS  PubMed  Article  Google Scholar 

  • Collier, R.J., Renquist, B.J., Xiao, Y., 2017. A 100-Year Review: Stress physiology including heat stress, Journal of Dairy Science, 100, 10367-10380.

    CAS  PubMed  Article  Google Scholar 

  • Collier, R.J., Baumgard, L.H., Zimbelman, R.B., Xiao, Y., 2019. Heat stress: physiology of acclimation and adaptation, Animal Frontiers, 9, 12-19.

    PubMed  Article  Google Scholar 

  • Cunningham, J.G., 2002. Textbook of Veterinary Physiology. 3rd Ed. W. B. Saunders; Philadelphia, PA, USA.

  • Da Silva, R.G., 1999. Estimate of radiation heat balance of Holstein cows in the sun and under the shade in a tropical environment, Revista Brasileira de Zootecnia, 28, 1403-1411.

    Article  Google Scholar 

  • Da Silva, R.G., Maia, A.S.C., 2011. Evaporative cooling and cutaneous surface temperature of Holstein cows in tropical conditions, Revista Brasileira de Zootecnia, 40, 1143-1147.

    Article  Google Scholar 

  • Das, S., Palai, T.K., Mishra, S.R., Das, D., Jena, B., 2011. Nutrition in relation to diseases and heat stress in poultry, Veterinary World, 4, 429-432.

    Article  Google Scholar 

  • Das, S., Mishra, S.K., Swain, R.K., Mohanty, D.N., Mishra, S.R., 2012. Comparative study of certain serum biochemical parameters in anoestrus and repeat breeding cows of Bhadrak district of Orissa, Indian Journal of Field Veterinarians, 7, 71.

    CAS  Google Scholar 

  • Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., Mtiwati, I., Kumar, R., 2016. Impact of heat stress on health and performance of dairy animals: A review, Veterinary World, 9, 260-268.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • De Andrade Ferrazza, R., Garcia, H.D.M, Aristizabal, V.H.V., de Souza Nogueira, C., Verissimo, C.J., Sartori, J.R., Sartori, R., Ferreira, J.C.P., 2017. Thermoregulatory responses of Holstein cows exposed to experimentally induced heat stress, Journal of Thermal Biology, 66, 68-80.

    PubMed  Article  Google Scholar 

  • De la Hoya, M.P.G., Toca Ramirez, J.A., Contreras, P.R., Diaz, C.E.P, Saucedo, F.O.R., Saucedo, J.S.Q., 2015. Role of leptin gene in cattle production: review, Journal of Animal and Veterinary Advances, 14, 81-90.

    Google Scholar 

  • De Rensis, F., Scaramuzzi, R.J., 2003. Heat stress and seasonal effects on reproduction in the dairy cow - a review, Theriogenology, 60, 1139-1151.

    PubMed  Article  CAS  Google Scholar 

  • Djokovic, R., Samanc, H., Bojkovski, J., Fratric, N., 2010. Blood concentrations of thyroid hormones and lipids of dairy cows in transitional period, Lucrări Ştiinłifice Medicină Veterinară, 43, 34-40.

    Google Scholar 

  • Do Amaral, B.C., Connor, E.E., Tao, S., Hayen, M.J., Bubolz, J.W., Dahl G.E., 2011. Heat stress abatement during the dry period influences metabolic gene expression and improves immune status in the transition period of dairy cows, Journal of Dairy Science, 94, 86-96.

    PubMed  Article  CAS  Google Scholar 

  • Ealy, A.D., Arechiga, C.F., Howell, J.L., Hansen, P.J., Monterroso, V.H., 1995. Developmental changes in sensitivity of bovine embryos to heat shock and use of antioxidants as thermoprotectants, Journal of Animal Science, 73, 1401-1407.

    CAS  PubMed  Article  Google Scholar 

  • Eigenberg, R.A., Brown-Brandl, T.M., Nienaber, J.A., 2009. Shade material evaluation using a cattle response model and meteorological instrumentation, International Journal of Biometeorology, 53, 501-507.

    PubMed  Article  Google Scholar 

  • El-Koja, M.N., Belyea, R.L., Johnson, H.D., Marts, F.A., 1980. Effect of environmental temperature and deity fiber level upon intake, milk production and nutrient utilization of lactating dairy cows, American Journal of Dairy Science, 5, 63-85.

    Google Scholar 

  • El-Nouty, F.D., Elbanna, I.M., Davis, T.P., Johnson, H.D., 1980. Aldosterone and ADH response to heat and dehydration in cattle, Journal of Applied Physiology, 48, 249-255.

    CAS  PubMed  Article  Google Scholar 

  • Falkenberg, S.M., Ridpath, J., Vander Ley, B., Bauermann, F.V., Sanchez, N.B., Carroll, J.A., 2014. Comparison of temperature fluctuations at multiple anatomical locations in cattle during exposure to bovine viral diarrhea virus, Livestock Science, 164:159-167.

    Article  Google Scholar 

  • Fekete, C., Lechan, R.M., 2013. Central regulation of hypothalamic pituitary-thyroid axis under physiological and pathophysiological conditions, Endocrine Reviews, 35, 159-194.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Finch, V.A., 1985. Comparison of non-evaporative heat transfer in different cattle breeds, Australian Journal of Agricultural Research, 36, 497-508.

    Article  Google Scholar 

  • Finch, V.A., Bennett, I.L, Holmes, C.R., 1984. Coat color in cattle: effect of thermal balance, behaviour, and growth and relationship with coat type, The Journal of Agricultural Science, 102, 141-147.

    Article  Google Scholar 

  • Findlay, J.D., 1958. Physiological Reactions of Cattle to Climatic Stress, Proceedings of Nutrition Society, 17, 186-190.

    CAS  Article  Google Scholar 

  • Fisher, A.D., Roberts, N., Matthews, L.R., 2002. Shade: Its use by livestock and effectiveness at alleviating heat challenge, Report to MAF Policy, New Zealand.

    Google Scholar 

  • Foote, R.H., Munkenbeck, N., Greene, W.A., 1976. Testosterone and libido in holstein bulls of various ages, Journal of Dairy Science, 59, 2011-2013.

    CAS  PubMed  Article  Google Scholar 

  • Fregonesi, J.A., Leaver, J.D., 2001. Behaviour, performance and health indicators of welfare for dairy cows housed in strawyard or cubicle systems, Livestock Production Science, 68, 205-216.

    Article  Google Scholar 

  • Gangawar, P.C., Branton, C., Evans, D.L., 1965. Reproductive and physiological responses Holstein heifers to control and natural climate, Journal of Dairy Science, 48, 222-227.

    Article  Google Scholar 

  • Gantner, V., Mijic, P., Kuteroval, K., Solic, D., Gantner, R., 2011. Thermal humidity index values and their significance on daily production of dairy cattle, Mljekarstvo, 61, 56-63.

    Google Scholar 

  • Garcia, M.R., Amstalden, M., Williams, S.W., Stanko, R.L., Morrison, C.D., Keisler, D.H., Nizielski, S.E., Williams, G.L., 2002. Serum leptin and its adipose gene expression during pubertal development, the estrous cycle, and different seasons in cattle, Journal of Animal Science, 80, 2158-2167.

    CAS  PubMed  Google Scholar 

  • Garcia-Ispierto, I., Lopez-Gatius, F., Santolaria, P., Yaniz, J.L., Nogareda, C., Lopez-Bejar, M., De Rensis, F., 2006. Relationship between heat stress during the peri-implantation period and early fetal loss in dairy cattle, Theriogenology, 65, 799-807.

    CAS  PubMed  Article  Google Scholar 

  • Garner, J.B., Douglas, M., Williams, S.R.O., Wales, W.J., Marett, L.C., DiGiacomo, K., Leury, B.J., Hayes, B.J., 2017. Responses of dairy cows to short-term heat stress in controlled-climate chambers, Animal Production Science, 57, 1233-1241.

    Article  Google Scholar 

  • Gaughan, J.B., Goodwin, P.J., Schoorl, T.A., Young, B.A., Imbeah, M., Mader, T.L., Hall, A., 1998. Shade preferences of lactating Holstein-Friesian cows, Australian Journal of Experimental Agriculture, 38, 17-21.

    Article  Google Scholar 

  • Gaughan, J.B., Holt, S.M., Hahn, G.L., Mader, T.L., Eigenberg, R., 2000. Respiration rate-is it a good measure of heat stress in cattle?, Asian-Australasian Journal of Animal Science, 13, 329-332.

    Article  Google Scholar 

  • Gaughan, J.B., Mader, T.L., Holt, S.M., Sullivan, M.L., Hahn, G.L., 2010. Assessing the heat tolerance of 17 beef cattle genotypes, International Journal of Biometeorology, 54, 617-627.

    CAS  PubMed  Article  Google Scholar 

  • Gaughan, J., Bonner, S., Loxton, I., Mader, T.L., 2013. Effects of chronic heat stress on plasma concentration of secreted heat shock protein 70 in growing feedlot cattle, Journal of Animal Science, 91, 120-129.

    CAS  PubMed  Article  Google Scholar 

  • Gebremedhin, K.G., Wu, B., 2001. A model of evaporative cooling of wet skin surface and fur layer, Journal of Thermal Biology, 26, 537-545.

    Article  Google Scholar 

  • Gebremedhin, K.G., Hillman, P.E., Lee, C.N., Collier, R.J., Willard, S.T., Arthington, J.D., Brown-Brandl, T.M., 2008. Sweating rates of dairy cows and beef heifers in hot conditions, American Society of Agricultural and Biological Engineers, 51, 2167-2178.

    Google Scholar 

  • Gendelman, M., Aroyo, A., Yavin, S., Roth, Z., 2010. Seasonal effects on gene expression, cleavage timing, and developmental competence of bovine preimplantation embryos, Reproduction, 140, 73-82.

    CAS  PubMed  Article  Google Scholar 

  • Gilad, E., Meidan, R., Berman, A., Graber, Y., Wolfenson, D., 1993. Effect of heat stress on tonic and GnRH-induced gonadotrophin secretion in relation to concentration of oestradiol in plasma of cyclic cows, Journal of Reproduction and Fertility, 99, 315-321.

    CAS  PubMed  Article  Google Scholar 

  • Grewal, S., Aggarwal, A., 2018. Physiological response of periparturient sahiwal and karan fries cows during hot humid and winter seasons, International Journal of Chemical Studies, 6, 2258-2262.

    Google Scholar 

  • Guzeloglu, A., Ambrose, J.D., Kassa, T., Diaz, T., Thatcher, M.J., Thatcher, W.W., 2001. Long term follicular dynamics and biochemical characteristics of dominant follicles in dairy cows subjected to acute heat stress, Animal Reproduction Science, 66, 15-34.

    CAS  PubMed  Article  Google Scholar 

  • Gwazdauskas, F.C., Thatcher, W.W., Wilcox, C.J., 1973. Physiological, environmental, and hormonal factors at insemination which may affect conception, Journal of Dairy Science, 56, 873-877.

    CAS  PubMed  Article  Google Scholar 

  • Gwazdauskas, F.C., Wilcox, C.J., Thatcher, W.W., 1975. Environmental and management factors affecting conception rate in a subtropical climate, Journal of Dairy Science, 58, 88-92.

    CAS  PubMed  Article  Google Scholar 

  • Gwazdauskas, F.C., Thatcher, W.W., Kiddy, C.A., Pape, M.J., Wilcox, C.J., 1981. Hormonal pattern during heat stress following PGF2alpha-tham salt induced luteal regression in heifers, Theriogenology, 16, 271-285.

    CAS  PubMed  Article  Google Scholar 

  • Habeeb, A.A.M., 1987. The role of insulin in improving productivity of heat stressed farm animals with different techniques, Ph.D. Thesis, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.

  • Habeeb, A.A.M., Aboulnaga, A.J., Kamal, T.H., 2001. Heat-induced changes in body water concentration, Ts, cortisol, glucose and cholesterol levels and their relationships with thermo neutral bodyweight gain in Friesian calves, Proceedings of the 2nd International Conference on Animal Production and Health in Semi-arid Areas, 29-31, El-Arish, North Sinai, Egypt, pp. 97-108.

  • Hammond, A.C., Olson, T.A., Chase. C.C.Jr., Bowers, E.J., Randel, R.D., Murphy, C.N., Vogt, D.W., Tewolde, A., 1996. Heat tolerance in two tropically adapted Bos taurus breeds, Senepol and Romosinuano, compared with Brahman, Angus, and Hereford cattle in Florida, Journal of Animal Science, 74, 295-303.

  • Hansen, P.J., 2007. Exploitation of genetic and physiological determinants of embryonic resistance to elevated temperature to improve embryonic survival in dairy cattle during heat stress, Theriogenology, 68, 242-249.

    Article  CAS  Google Scholar 

  • Hansen, P.J., 2009. Effects of heat stress on mammalian reproduction, Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 3341-3350.

    Article  Google Scholar 

  • Hein, K.G., Allrich, R.D., 1992. Influence of exogenous adrenocorticotropic hormone on estrous behavior in cattle, Journal of Animal Science, 70, 243-247.

    CAS  PubMed  Article  Google Scholar 

  • Her, E., Wolfenson, D., Flamenbaum, I., Folman, Y., Kaim, M., Berman, A., 1988. Thermal, productive and reproductive responses of high yielding cows exposed to short-term cooling in summer, Journal of Dairy Science, 71, 1085-1092.

    CAS  PubMed  Article  Google Scholar 

  • Hidalgo, E.I.A., 2009. Responses to heat stress in slick vs. Normal-haired holstein cows, A thesis presented to the graduate school of University of Florida, Florida, USA.

    Google Scholar 

  • Hillman, P.E., Lee, C.N., Carpenter, J.R., Baek, K.S., Parkhurst, A., 2001. Impact of hair color on thermoregulation of dairy cows to direct sunlight. In: ASAE Annual International Meeting, Sacramento, CA, ASAE. Paper No. 014031.

  • Howell, J.L, Fuquay, J.W., Smith, A.E., 1994. Corpus luteum growth and function in lactating Holstein cows during spring and summer, Journal of Dairy Science, 77, 735-739.

    CAS  PubMed  Article  Google Scholar 

  • Hu, H., Zhang, Y., Zheng, N., Cheng, J., Wang, J., 2016. The effect of heat stress on gene expression and synthesis of heat-shock and milk proteins in bovine mammary epithelial cells, Animal Science Journal, 87, 84-91.

    CAS  PubMed  Article  Google Scholar 

  • Huszenicza, G., Kulcsar, M., Rudas, P., 2002. Clinical endocrinology of thyroid gland function in ruminants, Veterinary Medicine Czech, 47, 199-210.

    CAS  Google Scholar 

  • Igono, M.O., Johnson, H.D., Steevens, B.J., Krause, G.F., Shanklin, M.D., 1987. Physiological, productive, and economic benefits of shade, spray, and fan system versus shade for Holstein cows during summer heat, Journal of Dairy Science, 70, 1069-1079.

    CAS  PubMed  Article  Google Scholar 

  • Igono, M.O., Johnson, H.D., Steevens, B.J., Hainen, W.A., Shanklin, M.D., 1988. Effect of season on milk temperature, milk growth hormone, prolactin and somatic cell counts of lactating cattle, International Journal of Biometeorology, 32:194-200.

    CAS  PubMed  Article  Google Scholar 

  • Indu, S., Pareek, A., 2015. A Review: Growth and Physiological Adaptability of Sheep to Heat Stress under Semi-Arid Environment, International Journal of Emerging Trends in Science and Technology, 2, 3188-3198.

    Google Scholar 

  • Ingraham, R.H., Gillette, D.D., Wagner, W.D., 1974. Relationship of temperature and humidity to conception rate of Holstein cows in subtropical climate, Journal of Dairy Science, 57, 476-481.

    CAS  PubMed  Article  Google Scholar 

  • Itoh, F., Obara, Y., Rose, M.T., Fuse, H., Hashimoto, H., 1998. Insulin and glucagons secretion in lactating cows during heat exposure, Journal of Animal Science, 76, 2182-2189.

    CAS  PubMed  Article  Google Scholar 

  • Janzekovic, M., Mursec, B., Janzekovic, I., 2006. Techniques of measuring heart rate in cattle. Tehnicki Vjesnik, 13, 31-37.

    Google Scholar 

  • Jian, W., Ke, Y., Cheng, L., 2015. Physiological responses and lactation to cutaneous evaporative heat loss in Bos indicus, Bos taurus, and their crossbreds, Asian-Australasian Journal of Animal Science, 28, 1558-1564.

    CAS  Article  Google Scholar 

  • Jiménez-Severiano, H., Quintal-Franco, J., Vega-Murillo, V., Zanella, E., Wehrman, M.E., Lindsey, B.R., Melvin, E.J., Kinder, J.E., 2003. Season of the year influences testosterone secretion in bulls administered luteinizing hormone, Journal of Animal Science, 81, 1023-1029.

    PubMed  Article  Google Scholar 

  • Johnson, K.G., Hales, J.R.S., 1983. The microcirculation and sweating in isolated perfused horse and ox skin, Journal of Thermal Biology, 8, 273-277.

    Article  Google Scholar 

  • Johnson, H.D., Katti, P.S., Hahn, L., Shanklin, M.D., 1988. Short-term heat acclimation effects on hormonal profile of lactating cows, Univ of Missouri Rsch. Bull. No. 1061. Columbia. USA.

  • Jolly, P.D., McDougall, S., Fitzpatrick, L.A., Macmillan, K.L., Entwhitsle, K., 1995. Physiological effects of under nutrition on postpartum anoestrous in cows, Journal of Reproduction and Fertility. Supplement, 49, 477-492.

    CAS  PubMed  Google Scholar 

  • Jonsson, N.N., McGowan, M.R, McGuigan, K., Davison, T.M., Hussain, A.M., Kafi, M., Matschoss, A., 1997. Relationship among calving season, heat load, energy balance and postpartum ovulation of dairy cows in a subtropical environment, Animal Reproduction Science, 47, 315-326.

    CAS  PubMed  Article  Google Scholar 

  • Kadzere, C.T., Murphy, M.R., Silanikove, N., Maltz E., 2002. Heat stress in lactating dairy cows: A review, Livestock Production Science, 77, 59-91.

    Article  Google Scholar 

  • Kahl, S., Elsasser, T.H., Rhoads, R.P., Collier, R.J., Baumgard, L.H., 2015. Environmental heat stress modulates thyroid status and its response to repeated endotoxin challenge in steers, Domestic Animal Endocrinology, 52, 43-50.

    CAS  PubMed  Article  Google Scholar 

  • Kamal, T.H., Habeeb, A.A., Abdel-Samee, A.M., Abdel-Razik, M.A., 1989. Supplementation of heat-stressed Friesian cows with urea and mineral mixture and its effect on milk production in the subtropics, In: Proceedings of Symposium on Ruminant Production in the Dry Subtropics: Constraints and Potentials. Cairo, Egypt. EAAP Publ. No.38, Pudoc Sci. Publ., Wageningen. 183-185.

  • Kamal, R., Dutt, T., Patel, M., Dey, A., Chandran, P.C., Bharti, P.K., Barari, S.K., 2016. Behavioural, biochemical and hormonal responses of heat-stressed crossbred calves to different shade materials, Journal of Applied Animal Research, 44, 347-354.

    CAS  Article  Google Scholar 

  • Kastelic, J.P., Cook, R.B., Coulter, G.H., Saacke, R.G., 1996. Insulating the scrotal neck affects semen quality and scrotal/testicular temperatures in the bull, Theriogenology, 45, 935-942.

    CAS  PubMed  Article  Google Scholar 

  • Katiyatiya, C.L.F., Bradley, G., Muchenje, V., 2017. Thermotolerance, health profile and cellular expression of HSP90AB1 in Nguni and Boran cows raised on natural pastures under tropical conditions, Journal of Thermal Biology, 69, 85-94.

    CAS  PubMed  Article  Google Scholar 

  • Kendall, P.E., Nielsen, P.P., Webster J.R., Verkerk G.A., Littlejohn R.P., Matthews L.R., 2006. The effects of providing shade to lactating dairy cows in a temperate climate, Livestock Science, 103, 148-157.

    Article  Google Scholar 

  • Khan, A., Dou, J., Wang, Y., Jiang, X., Khan, M.Z., Luo, H., Usman, T., Zhu, H., 2020. Evaluation of heat stress effects on cellular and transcriptional adaptation of bovine granulosa cells, Journal of Animal Science and Biotechnology, 11, 25.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Khodaei-Motlagh, M., Zare Shahneh, A., Masoumi, R., Derensis, F., 2013. Alterations in reproductive hormones during heat stress in dairy cattle, African Journal of Biotechnology, 10, 5552-5558.

    Google Scholar 

  • Kim, K.H., Kim, D.H., Oh, Y.K., Lee, S.S., Lee, H.J., Kim, D.W., Seol, Y.J., Kimura, N., 2010. Productivity and energy partition of late lactation dairy cows during heat exposure, Animal Science Journal, 81, 58-62.

    CAS  PubMed  Article  Google Scholar 

  • Kim, W.S., Lee, J.S., Jeon, S.W., Peng, D.Q., Kim, Y.S., Bae, M.H., Jo, Y.H., Lee, H.G., 2018. Correlation between blood, physiological and behavioral parameters in beef calves under heat stress, Asian-Australasian Journal of Animal Science, 31, 919-925.

    CAS  Article  Google Scholar 

  • Kim, W.S., Nejad, J.G., Peng, D.Q., Jung, U.S., Kim, M.J., Jo, Y.H., Jo, J.H., Lee, J.S., Lee, H.G., 2020. Identification of heat shock protein gene expression in hair follicles as a novel indicator of heat stress in beef calves, Animal, 14, 1502-1508.

    CAS  PubMed  Article  Google Scholar 

  • Kim, W.S., Nejad, J.G., Roh, S.G., Lee, H.G., 2020a. Heat-shock proteins gene expression in peripheral blood mononuclear cells as an indicator of heat stress in beef calves, Animals, 10, 895.

    PubMed Central  Article  Google Scholar 

  • Kishore, A., Sodhi, M., Kumari, P., Mohanty, A.K., Sadana, D.K., Kapila, N., Khate, K., Shandilya, U., Kataria, R.S., Mukesh, M., 2014. Peripheral blood mononuclear cells: a potential cellular system to understand differential heat shock response across native cattle (Bos indicus), exotic cattle (Bos taurus), and riverine buffaloes (Bubalus bubalis) of India, Cell Stress and Chaperones, 19, 613-621.

    CAS  PubMed  Article  Google Scholar 

  • Kishore, A., Sodhi, M., Sharma, A., Shandilya, U.K., Mohanty A., Verma, P., Mann. S., Mukesh, M., 2016. Transcriptional stability of heat shock protein genes and cell proliferation rate provides an evidence of superior cellular tolerance of Sahiwal (Bos indicus) cow PBMCs to summer stress, Journal Veterinary Science, 2, 34-40.

  • Kleinjan-Elazary, A., Ben-Meir, Y., Gacitua, H., Levit, H., Fridman, A., Shinder, D., Jacoby, S., Miron, J., Halachmi, I., Gershon, E., 2020. Cooling management effects on dry matter intake, metabolic hormones levels and welfare parameters in dairy cows during heat stress, Journal of Dairy Science, 87, 64-69.

    CAS  Google Scholar 

  • Koatdoke, U., PhD Thesis. Khon Kaen University; Khon Kaen, Thailand: 2008. Comparative study on physiological mechanism and cellular responses related to heat tolerance between Bos indicus and Bos taurus.

  • Koga, A., 2004. Comparison of the thermoregulatory response of buffaloes and tropical cattle, using fluctuations in rectal temperature, skin temperature and haematocrit as an index, The Journal of Agricultural Science, 142, 351-355.

    Article  Google Scholar 

  • Kohli, S., Atheya, U.K., Thapliyal, A., 2014. Assessment of optimum thermal humidity index for crossbred dairy cows in Dehradun district, Uttarakhand, India, Veterinary World, 7, 916-921.

    Article  Google Scholar 

  • Kokkonen, T., Taponen, J., Alasuutari, S., Nousiainen, M., Anttila, T., Syrjala-Qvist, L., 2002. Plasma leptin in transition dairy cows. Effects of body fatness, ambient temperature and dietary factors, In: Proc. British Society of Animal Science, York, UK, 92.

  • Kolli, V., Upadhyay, R.C., Singh, D., 2014. Peripheral blood leukocytes transcriptomic signature highlights the altered metabolic pathways by heat stress in zebu cattle, Research in Veterinary Science, 96, 102-110.

    CAS  PubMed  Article  Google Scholar 

  • Koubkova, M., Kuizkova, I., Kunc, P., Hartlova, H., Flusser, J., Dolezal, O., 2002. Influence of high environmental temperature and evaporative cooling on some physiological, haematological and biochemical parameters in high yielding dairy cows, Journal of Animal Science, 47, 309-318.

    CAS  Google Scholar 

  • Kumar, S.B.V., Kumar, A., Kataria, M., 2011. Effect of heat stress in tropical livestock and different strategies for its amelioration, Journal of Stress Physiology and Biochemistry, 7, 46-54.

    Google Scholar 

  • Kumar, A., Ashraf, S., Goud, T.S., Grewal, A., Singh, S.V., Yadav, B.R., Upadhyay, R.C., 2015. Expression profiling of major heat shock protein genes during different seasons in cattle (Bos indicus) and buffalo (Bubalus bubalis) under tropical climatic condition, Journal of Thermal Biology, 51, 55-64.

    CAS  PubMed  Article  Google Scholar 

  • Kumar, J., Kumar, M., Madan, A.K., Singh, Y., Yadav, B., Anand, M., 2017. Effect of season on physiological parameters and production profile of hariana and sahiwal cattle, Haryana Vetenarian, 56, 69-71.

    Google Scholar 

  • Kumar, J, Yadav, B, Madan, AK, Kumar, M, Sirohi, R, Reddy, A.V., 2019. Dynamics of heat-shock proteins, metabolic and endocrine responses during increasing temperature humidity index (THI) in lactating Hariana (Zebu) cattle, Biological Rhythm Research, 1-17. doi:https://doi.org/10.1080/09291016.2019.1566986.

  • Lamp, O., Derno, M., Otten, W., Mielenz, M., Nürnberg, G., Kuhla, B., 2015. Metabolic Heat Stress Adaption in Transition Cows: Differences in Macronutrient Oxidation between Late-Gestating and Early-Lactating German Holstein Dairy Cows, PloS one, 10, e0125264.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Lee, C.N., 1993. Environmental stress effect on bovine reproduction, Veterinary Clinics of North America: Food Animal Practice, 9, 263-273.

    CAS  Google Scholar 

  • Lees, A.M., Sejian, V., Wallage, A.L., Steel, C.C., Mader, T.L., Lees, J.C., Gaughan, J.B., 2019. The impact of heat load on cattle, Animals, 9, 322.

    PubMed Central  Article  Google Scholar 

  • Lefcourt, A.M., Erez, B., Varner, M.A., Barfield, R., Tasch, U., 1999. A non invasive radiotelemetry system to monitor heart rate for assessing stress responses of bovines, Journal of Dairy Science, 82, 1179-1187.

    CAS  PubMed  Article  Google Scholar 

  • Lenis Sanin, Y., Zuluaga Cabrera, A.M., Tarazona Morales, A.M., 2015. Adaptive responses to thermal stress in mammals, Revista de Medicina Veterinaria, 5, 121-135.

    Article  Google Scholar 

  • López-Gatius, F., López-Béjar, M., Fenech, M., Hunter, R.H., 2005. Ovulation failure and double ovulation in dairy cattle: risk factors and effects, Theriogenology, 63, 1298-1307.

    PubMed  Article  Google Scholar 

  • Lucena, C., Olson, T.A., 2000. Effect of hair coat type on rectal temperatures, milk production and calving interval in Holstein X Carora crossbred cows, In: Proceedings of 10th Congreso Venezolano de Zootecnia, Guanare, Venezuela 84.

  • Lupoli, B., Johansson, B., Uvnas-Moberg, K., Svennersten-Sjaunja, K., 2001. Effect of suckling on the release of oxytocin, prolactin, cortisol, gastrin, cholecystokinin, somatostatin and insulin in dairy cows and their calves, The Journal of Dairy Research, 68, 175-187.

    CAS  PubMed  Article  Google Scholar 

  • Mader, T.L., Fell, L.R., McPhee, M.J., 1997. Behavior response of non-Brahman cattle to shade in commercial feedlots, In Proceedings of 5th International Livestock Environment Symposium American Society of Agriculture Engineering St. Joseph, 5, 795-802.

  • Magdub, A., Johnson, H., Belyea, R., 1982. Effect of environmental heat and dietary fiber on thyroid physiology of lactating cows, Journal of Dairy Science, 65, 2323-2331.

    CAS  PubMed  Article  Google Scholar 

  • Maia, A.S., Da Silva, R.G., Battiston Loureiro, C.M., 2005. Sensible and latent heat loss from the body surface of Holstein cows in a tropical environment, International Journal of Biometeorology, 50, 17-22.

    CAS  PubMed  Article  Google Scholar 

  • Maia, A.S.C., Da Silva, R.G., Loureiro, C.M.B., 2008. Latent heat loss of Holstein cows in a tropical environment: a prediction model, Revista Brasileira de Zootecnia, 37, 1837-1843.

    Article  Google Scholar 

  • Maibam, U., Hooda, O.K., Sharma, P.S., Singh, S.V., Upadhyay, R.C., 2017. Seasonal Change in Oxidative Stress Markers in Blood Plasma of Tharparkar (Bos indicus) and Karan Fries (Bos indicus x Bos taurus) Cattle under Tropical Climate, International Journal of Current Microbiology and Applied Science, 6, 1720-1730.

    CAS  Article  Google Scholar 

  • Maibam, U., Hooda, O., Sharma, P., Mohanty, A.K., Singh, S.V., Upadhyay, R.C., 2017a. Expression of HSP70 genes in skin of zebu (Tharparkar) and crossbred (Karan Fries) cattle during different seasons under tropical climatic conditions. Journal of Thermal Biology, 63, 58-64.

    CAS  PubMed  Article  Google Scholar 

  • Mann, G.E., Lamming, G.E., Robinson, R.S., Wathes, D.C., 1999. The regulation of interferon-tau production and uterine hormone receptors during early pregnancy. Journal of Reproduction and Fertility, Supplement, 54, 317-328.

    CAS  Google Scholar 

  • Marai, I.F.M., Habeeb, A.A.M., Daader, A.H., Yousef, H.M., 1995. Effects of Egyptian sub-tropical conditions and the heat stress alleviation techniques of water spray and diaphoretics on the growth and physiological functions of Friesian calves, Journal of Arid Environments, 30, 219-225.

    Article  Google Scholar 

  • Marai, I.F.M., El-Darawany, A.A., Fadiel, A., Abdel-Hafez, M.A.M., 2007. Physiological traits as affected by heat stress in sheep - a review, Small Ruminant Research, 71, 1-12.

    Article  Google Scholar 

  • Mayengbam, P., Tolenkhomba, T.C., Upadhyay, R.C., 2015. Mn-SOD and Cu, Zn-SOD mRNA expression in relation to physiological indices of Sahiwal and Karan Fries heifers during different temperature humidity indices, Journal of Agrometeorology, 17, 172-178.

    Google Scholar 

  • McDowell, R.E., Weldy, J.R., 1967. Water Exhcange of cattle under heat stress, In Proceedings of the 3rd International Biometeorological Congress, London, UK, 414-424.

  • McGuire, M.A., Beede, D.K., Collier, R.J., Buonomo, F.C., Delorenzo, M.A., Wilcox, C.J., Huntington, G.B., Reynolds, C.K., 1991. Effect of acute thermal stress and amount of feed intake on concentrations of somatotropin, insulin-like growth factor I (IGF-I) and IGF-II and thyroid hormones in plasma of lactating dairy cows, Journal of Animal Science, 69, 2050-2056.

    CAS  PubMed  Article  Google Scholar 

  • Mclean, J.A., 1963. The regional distribution of cutaneous moisture vaporization in the Ayrshire calf, The Journal of Agricultural Science, 61, 275-280.

    Article  Google Scholar 

  • McMorris, T., 2016. Developing the catecholamines hypothesis for the acute exercise-cognition interaction in humans: lessons from animal studies, Physiology and Behavior, 165, 291-299.

    CAS  PubMed  Article  Google Scholar 

  • Meyerhoeffer, D.C., Wettemann, R.P., Coleman, S.W., Wells, M.E., 1985. Reproductive criteria of beef bulls during and after exposure to increased ambient temperature, Journal of Animal Science, 60, 352-357.

    CAS  PubMed  Article  Google Scholar 

  • Mihm, M., Baguisi, A., Boland, M.P., Roche, J.F., 1994. Association between the duration of dominance of the ovulatory follicle and pregnancy rate in beef heifers, Journal of Reproduction and Fertility, 102, 123-130.

    CAS  PubMed  Article  Google Scholar 

  • Min, L., Cheng, J., Shi, B., Yang, H., Zheng, N., Wang, J., 2015. Effects of heat stress on serum insulin, adipokines AMP-activated protein kinase, heat shock signal molecules in dairy cows, Journal of Zhejiang University Science B, 16, 541-548.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Minton, J.E., Wettemann, R.P., Meyerhoeffer, D.C., Hintz, R.L., Turman, E.J., 1981. Serum luteinizing hormone and testosterone in bulls during exposure to elevated ambient temperature, Journal of Animal Science, 53, 1551-1558.

    CAS  PubMed  Article  Google Scholar 

  • Mishra, S.R., 2020. Significance of molecular chaperones and micro RNAs in acquisition of thermo-tolerance in dairy cattle, Animal Biotechnology, https://doi.org/10.1080/10495398.2020.1830788.

  • Mishra, S.R., 2021. Thermoregulatory responses in riverine buffaloes against heat stress: An updated review, Journal of Thermal Biology, 102844.

  • Mishra, S.R., Palai, T.K., 2014. Importance of HSP70 in Livestock - at cellular level, Journal of Molecular Pathophysiology, 3, 30-32.

    Article  Google Scholar 

  • Mishra, S.R., Palai, T.K., 2014a. Steroidogenesis in luteal cell: A critical pathway for progesterone production, American Journal of Physiology, Biochemistry and Pharmacology, 3, 170-172.

    Google Scholar 

  • Mishra, S.R., Palai, T.K., 2014b. Leptin: A Metabolic Regulator of Reproduction in Livestock, Livestock Research International, 2, 75-80.

    Google Scholar 

  • Mishra, S.R., Kundu, A.K., Mahapatra, A.P.K., 2013. Effect of ambient temperature on membrane integrity of spermatozoa in different breeds of bulls, The Bioscan, 8, 181-183.

    Google Scholar 

  • Mishra, S.R., Bharati, J., Bharti, M.K., Kar, D., Sahoo, P.R., 2016. Adipokines as metabolic modulators of ovarian functions in livestock: A mini-review, Journal of Advanced Veterinary and Animal Research, 3, 206-213.

    Article  Google Scholar 

  • Mitra, R., Christison, G.I., Johnson, H.D., 1972. Effect of prolonged thermal exposure on growth hormone (GH) secretion in cattle, Journal of Animal Science, 34, 776-779.

    CAS  PubMed  Article  Google Scholar 

  • Mohr, E, Langbein, J, Nurnberg, G., 2002. Heart rate variability-A non invasive approach to measure stress in calves and cows, Physiology and Behavior, 75, 251-259.

    CAS  PubMed  Article  Google Scholar 

  • Morais, D.A.E.F., Maia, A.S.C., Silva, R.G., Vasconcelos, A.M., Lima, P.O., Guilhermino, M.M., 2008. Annual thyroid hormone variation and thermoregulators traits of milk cows in hot environment, Revista Brasileira de Zootecnia, 37, 538-545.

    Article  Google Scholar 

  • Moretti, R., Biffani, S., Chessa, S., Bozzi, R., 2017. Heat stress effects on Holstein dairy cows’ rumination, Animal, 11, 1-6.

    Article  Google Scholar 

  • Muller, C.J.C., Botha, J.A., 1993. Effect of summer climatic conditions on different heat tolerance indicators in primiparous Friesian and Jersey cows, South African Journal of Animal Science, 23, 98-103.

    Google Scholar 

  • Muller, C.J.C., Botha, J.A., Smith, W.A., 1994. Effect of shade on various parameters of Friesian cows in a Mediterranean climate in South Africa. 1. Feed and water intake, milk production and milk composition, South African Journal of Animal Science, 24, 49-55.

    Google Scholar 

  • Mullick, D.N., 1964. A study on the metabolism of food nutrients in cattle and buffaloes under climatic stress, Arid Zone Research, 14, 137.

    Google Scholar 

  • Murphy, M.G., Enright, W.J., Crowe, M.A., McConnell, K., Spicer, L.J., Boland, M.P., Roche, J.F., 1991. Effect of dietary intake on pattern of growth of dominant follicles during the oestrus cycle in beef heifers, Journal of Reproduction and Fertility, 92, 333-338.

    CAS  PubMed  Article  Google Scholar 

  • Nabenishi, H., Ohta, H., Nishimoto, T., Morita, T., Ashizawa, K., Tsuzuki, Y., 2012. The effects of cysteine addition during in vitro maturation on the developmental competence, ROS, GSH and apoptosis level of bovine oocytes exposed to heat stress, Zygote, 20, 249-259.

    CAS  PubMed  Google Scholar 

  • Naqvi, S.M.K., Kumar, D., Paul, R.K., Sejian, V., 2012. Environmental Stresses and Livestock Reproduction, In: Environmental Stress and Amelioration in Livestock Production. Springer-Verlag, GMbH Publisher, Germany, 97-128.

    Chapter  Google Scholar 

  • Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M.S., Bernabucci, U., 2010. Effects of climate changes on animal production and sustainability of livestock systems, Livestock Science, 130, 57-69.

    Article  Google Scholar 

  • Nebel, R.L., Jobst, S.M., Dransfield, M.B.G., Pandolfi, S.M., Balley, T.L., 1997. Use of radio frequency data communication system Heat Watch, to describe behavioral estrus in dairy cattle, Journal of Dairy Science, 80, 179.

    Google Scholar 

  • Nichi, M., Bols, P.E.J., Zuge, R.M., Barnabe, V.H., Goovaerts, I.G.F., Barnabe, R.C., Cordata, C.N.M., 2006. Seasonal variation in semen quality in Bos indicus and Bos Taurus bulls raised under tropical conditions, Theriogenology, 66, 822-828.

    CAS  PubMed  Article  Google Scholar 

  • Nonaka, I., Takusari, N., Tajima, K., Suzuki, H.T., Kurihara, K.M., 2008. Effect of high environmental temperatures on physiological and nutritional status of prepubertal Holstein heifers, Livestock Science, 113, 14-23.

    Article  Google Scholar 

  • NRC (National Research Council). 1989. Nutrient Requirements of Dairy Cattle. 6th revised edn. National Academy Press, Washington DC, USA.

    Google Scholar 

  • O’Callagan, D., Boland, M.P., 1999. Nutritional effects on ovulation, embryo development and the establishment of pregnancy in ruminants, Animal Science, 68, 299-314.

    Article  Google Scholar 

  • O'Brien, M.D., Rhoads, R.P., Sanders, S.R., Duff, G.C., Baumgard, L.H., 2010. Metabolic adaptations to heat stress in growing cattle, Domestic Animal Endocrinology, 38, 86-94.

    CAS  PubMed  Article  Google Scholar 

  • Omar, E.A., Kirrella, A.K., Fawzy, S.A., El-Keraby, F., 1996. Effect of water spray followed by forced ventilation on some physiological status and milk production of post-calving Friesian cows, Alexander Journal of Agricultural Research, 41, 71-81.

    Google Scholar 

  • Omidi, A., Kheirie, M., Sarir, H., 2015. Impact of vitamin C on concentrations of thyroid stimulating hormone and thyroid hormones in lambs under short-term acute heat stress, Veterinary Science Development, 5, 103-106.

    Google Scholar 

  • Ominski, K.H., Kennedy A.D., Wittenberg, K.M., Moshtaghi Nia, S.A., 2002. Physiological and production responses to feeding schedule in lactating dairy cows exposed to short-term, moderate heat stress, Journal of Dairy Science, 85, 730-737.

    CAS  PubMed  Article  Google Scholar 

  • Ortega, M.S., Rocha-Frigoni, N.A.S., Mingoti, G.Z., Roth, Z., Hansen, P.J., 2016. Modification of embryonic resistance to heat shock in cattle by melatonin and genetic variation in HSPA1L, Journal of Dairy Science, 99, 9152-9164.

    CAS  PubMed  Article  Google Scholar 

  • Overton, M.W., Sischo, W.M., Temple, G.D., Moore, D.A., 2002. Using time-lapse video photography to assess dairy cattle lying behavior in a free-stall barn. Journal of Dairy Science, 85, 2407-2413.

    CAS  PubMed  Article  Google Scholar 

  • Padilla, L., Matsui, T., Kamiya, Y., Tanaka, M., Yano, H. 2006. Heat stress decreases plasma vitamin C concentration in lactating cows, Livestock Science, 101, 300-304.

    Article  Google Scholar 

  • Paes, V.M., Vieira, L.A., Correia, H.H.V., Sa, N.A.R., Moura, A.A.A., Sales, A.D., Rodrigues, A.P.R., Magalhaes-Padilha, D.M., Santos, F.W., Apgar, G.A., Campello, C.C., Camargo, L.S.A., Figueiredo, J.R., 2016. Effect of heat stress on the survival and development of in vitro cultured bovine preantral follicles and on in vitro maturation of cumulus–oocyte complex, Theriogenology, 86, 994-1003.

    CAS  PubMed  Article  Google Scholar 

  • Palai, T.K., Mishra, S.R., 2015. Caspases: an apoptosis mediator, Journal of Advanced Veterinary and Animal Research, 2, 18-22.

    Article  Google Scholar 

  • Palkovits, M., 2014. Catecholamines and stress, Ideggyogyaszati Szemle, 67, 89-93.

    Google Scholar 

  • Parihar, A.S., Jain, P.K., Singh, H.S., Singh, Y.P., Singh, N.P., 1992. Seasonal variations in physiological responses of crossbred calves under different housing system, Indian Journal of Animal Science, 62, 686-688.

    Google Scholar 

  • Park, J.H., Choi, H.C., Lee, H.J., Kim, E.T., Son, J.K., Kim, D.H., 2019. A Study on the Effect of Temperature-Humidity Index on the Respiration Rate Rectal Temperature and Rumination Time of Lactating Holstein Cow in Summer Season, Journal of the Korea Academia Industrial Cooperation Society, 20, 136-143.

    Google Scholar 

  • Pereira, A.M.F., Baccari, Jr.F., Titto, E.A.L., Almeida, J.A.A., 2008. Effect of thermal stress on physiological parameters, feed intake and plasma thyroid hormones concentration in Alentejana Mertolenga, Frisian and Limousine cattle breeds, International Journal of Biometeorology, 52, 199-208.

    PubMed  Article  Google Scholar 

  • Pires, B.V., Stafuzza, N.B., Lima, S., Lima, S.B.G.P.N.P., Negrão, J.A., Paz, C.C.P., 2019. Differential expression of heat shock protein genes associated with heat stress in Nelore and Caracu beef cattle, Livestock Science, 230, 103839.

    Article  Google Scholar 

  • Polsky, L., Von Keyserlingk, M.A.G., 2017. Invited review: Effects of heat stress on dairy cattle welfare, Journal of Dairy Science, 100, 8645-8657.

    CAS  PubMed  Article  Google Scholar 

  • Prasanpanich, S., Semicha, S., Tunsaringkarn, K., Thwaites, C.J., Vajnabukka, C., 2002. Physiological responses of lactating cows under grazing and indoor feeding conditions in the tropics, Journal of Agricultural Science, 138, 341-344.

    Article  Google Scholar 

  • Putney, D.J., Malayer, J.R., Gross, T.S., Thatcher, W.W., Hansen, P.J., Drost, M., 1988, Heat stress-induced alterations in the synthesis and secretion of proteins and prostaglandins by cultured bovine conceptuses and uterine endometrium, Biology of Reproduction, 39, 717-728.

    CAS  PubMed  Article  Google Scholar 

  • Putney, D.J., Drost, M., Thatcher, W.W., 1989. Influence of summer heat stress on pregnancy rates of lactating dairy cattle following embryo transfer or artificial insemination, Theriogenology, 31, 765-778.

    CAS  PubMed  Article  Google Scholar 

  • Rahman, M.B., Schellander, K., Luceño, N.L., Van Soom, A., 2018. Heat stress responses in spermatozoa: Mechanisms and consequences for cattle fertility, Theriogenology, 113, 102-112.

    CAS  PubMed  Article  Google Scholar 

  • Rashamol, V.P., Sejian, V., Bagath, M., Krishnan, G., Archana, P.R., Bhatta, R., 2018. Physiological adaptability of livestock to heat stress: an updated review, Journal of Animal Behaviour and Biometeorology, 6, 62-71.

    Article  Google Scholar 

  • Rasooli, A., Nouri, M., Khadjeh, G.H., Rasekh, A., 2004. The influence of seasonal variations on thyroid activity and some biochemical parameters of cattle, Iranian Journal of Veterinary Research, 5, 1383-1391.

    Google Scholar 

  • Reshma, R., Mishra, S.R., Thakur, N., Parmar, M.S., Somal, A., Bharti, M.K., Pandey, S., Chouhan, V.S., Verma, M.R., Singh, G., Sharma, G.T., Maurya, V.P., Sarkar, M., 2016. Modulatory Role of Leptin on Ovarian Functions in Water Buffalo (Bubalus Bubalis), Theriogenology, 86, 1720-1739.

    CAS  PubMed  Article  Google Scholar 

  • Rhoads, M.L., Rhoads, R.P., VanBaale, M.J., Collier, R.J., Sanders, S.R., Weber, W.J., Crooker, B.A., Baumgard, L.H., 2009. Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism and aspects of circulating somatotropin, Journal of Dairy Science, 92, 1986-1997.

    CAS  PubMed  Google Scholar 

  • Rhoads, R.P., Baumgard L.H., Suagee, J.K., Sanders, S.R., 2013. Nutritional interventions to alleviate the negative consequences of heat stress, Advances in Nutrition, 4, 267-276.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Rhynes, W.E., Ewing, L.L., 1973. Testicular endocrine function in Hereford bulls exposed to high ambient temperature. Endocrinology, 92, 509-515.

    CAS  PubMed  Article  Google Scholar 

  • Riedel, W., Layka, H., Neeck, G., 1998. Secretory pattern of GH, TSH, thyroid hormones, ACTH, cortisol, FSH, and LH in patients with fibromyalgia syndrome following systemic injection of the relevant hypothalamic-releasing hormones, Zeitschrift für Rheumatologie, 57, 81-87.

    CAS  PubMed  Article  Google Scholar 

  • Rivera, R.M., Hansen, P.J., 2001. Development of cultured bovine embryos after exposure to high temperatures in the physiological range, Reproduction, 121, 107-115.

    CAS  PubMed  Article  Google Scholar 

  • Roman-Ponce, H., Thatcher, W.W., Buffington, D.E., Wilcox, C.J., Van Horn, H.H., 1977. Physiological and production responses ofdairy cattle to a shade structure in a subtropical environment, Journal of Dairy Science, 60, 424-430.

    Article  Google Scholar 

  • Roman-Ponce, H., Thatcher, W.W., Canton, D., Barron, D.H., Wilcox, C.J., 1978. Thermal stress effects on uterine blood flow in dairy cows, Journal of Animal Science, 46, 175-180.

    CAS  PubMed  Article  Google Scholar 

  • Roman-Ponce, H., Thatcher, W.W., Wilcox, C.J., 1981. Hormonal interrelationships and physiological responses of lactating dairy cows to shade management system in a subtropical environment, Theriogenology, 16, 139-154.

    CAS  PubMed  Article  Google Scholar 

  • Roman-Ponce, H., Thatcher, W.W., Collier, R.J., Wilcox, C.J., 1981a. Hormonal responses of lactating dairy cattle to TRH and ACTH in a shade management system within a subtropical environment, Theriogenology, 16, 131-138.

    CAS  PubMed  Article  Google Scholar 

  • Ronchi, B., Stradaioli, G., Verini Supplizi, A., Bernabucci, U., Lacetera, N., Accorsi, P.A., Nardone, A., Seren, E., 2001. Influence of heat stress and feed restriction on plasma progesterone, estradiol-17β LH, FSH, prolactin and cortisol in Holstein heifers, Livestock Production Science, 68, 231-241.

    Article  Google Scholar 

  • Roth, Z., 2018. Stress-induced alterations in oocyte transcripts are further expressed in the developing blastocyst, Molecular Reproduction and Development, 85, 821-835.

    CAS  PubMed  Article  Google Scholar 

  • Roth, Z., Wolfenson, D., 2016. Comparing the effects of heat stress and mastitis on ovarian function in lactating cows: Basic and applied aspects, Domestic Animal Endocrinology, 56, S218-S227.

    CAS  PubMed  Article  Google Scholar 

  • Roth, Z., Meidan, R., Braw-Tal, R., Wolfenson, D., 2000. Immediate and delayed effect of heat stress on follicular development and its association with plasma FSH and inhibin concentration in cows, Journal of Reproduction and Fertility, 120, 83-90.

    CAS  PubMed  Article  Google Scholar 

  • Ryan, D.P., Blakewood, E.G., Munyakazi, L., Godke, R.A., Lynn, J.W., 1992. Effect of heat-stress on bovine embryo development in vitro, Journal of Animal Science, 70, 3490-3497.

    CAS  PubMed  Article  Google Scholar 

  • Ryan, D.P., Prichard, J.F., Kopel, E., Godke, R.A., 1993. Comparing early mortality in dairy cows during hot and cold seasons of the year, Theriogenology, 39, 719-737.

    CAS  PubMed  Article  Google Scholar 

  • Saadeldin, I.M., Swelum, A.A., Zakri, A.M., Tukur, H.A., Alowaimer, A.N., 2020. Effects of acute hyperthermia on the thermotolerance of cow and sheep skin-derived fibroblasts, Animals, 10, 545.

    PubMed Central  Article  Google Scholar 

  • Saber, A.P.R., Jalali, M.T., Mohjeri, D., Akhoole, A.A., Teymuourluei, H.Z.N., Nouri, M., Garachorlo, S., 2009. The effect of ambient temperature on thyroid hormones concentration and histopathological changes of thyroid gland in cattle in Tabriz Iran, Asian Journal of Animal and Veterinary Advances, 4, 28-33.

    CAS  Article  Google Scholar 

  • Sahu, S., Mishra, S.R., Kundu, A.K., 2019. Impact of thermal stress on expression dynamics of HSP60 in cardiac fibroblast cells of goat, Animal Biotechnology, 28, 1-7. doi: https://doi.org/10.1080/10495398.2019.1696353.

    CAS  Article  Google Scholar 

  • Sailo, L., Gupta, I.D., Das, R., Chaudhari, M.V., 2017. Physiological Response to Thermal Stress in Sahiwal and Karan Fries Cows, International Journal of Livestock Research, 7, 275-283.

    Article  Google Scholar 

  • Sakatani, M., Yamanaka, K., Kobayashi, S., Takahashi, M., 2008. Heat shock-derived reactive oxygen species induce embryonic mortality in in vitro early stage bovine embryos, Journal of Reproduction and Development, 54, 496-501.

    CAS  Article  Google Scholar 

  • Sakatani, M., Balboula, A.Z., Yamanaka, K., Takahashi, M., 2012. Effect of summer heat environment on body temperature, estrous cycles and blood antioxidant levels in Japanese Black Cow, Animal Science Journal, 83, 394-402.

    CAS  PubMed  Article  Google Scholar 

  • Salles, A.Y.F.L., Batista, L.F., Souza, B.B., Silva, A.F., Correia, E.L.B., 2017. Growth and reproduction hormones of ruminants subjected to heat stress, Journal of Animal Behaviour and Biometeorology, 5, 7-12.

    Article  Google Scholar 

  • Sanap, V.N., Ludri, A., Mir, N.A., Kumar, B., Mittal, K.K., 2018. Physiological Performance of Crossbred Cattle Calves (Karan Fries) under Different Housing Conditions during Different Seasons, International Journal of Current Microbiology and Applied Science, 7, 2738-2748.

    CAS  Article  Google Scholar 

  • Sartori, R., Sartor-Bergfelt, R., Mertens, S.A., Guenther, J.N., Parrish, J.J., Wiltbank, M.C., 2002. Fertilization and early embryonic development in heifers and lactating cows in summer and lactating and dry cows in winter, Journal of Dairy Science, 85, 2803-2812.

    CAS  PubMed  Article  Google Scholar 

  • Sayah, M.S., Abu El-Hamd, M.A., El-Diahy, Y.M., Nagadi, S.A., 2019. Effect of Season and Housing on Physiological Reactions Testosterone and Semen Quality of Friesian Bulls, International Journal of Engineering Research and Technology, 08, 424-430.

    Google Scholar 

  • Schams, D., Stephan, E., Hooley, R.D., 1980. The effects of heat exposure on blood serum of anterior pituitary hormones in calves, heifers and bulls, Acta Endocrinologica, 94, 309-314.

    CAS  PubMed  Article  Google Scholar 

  • Scharf, B., Carroll, J.A., Riley, D.G., Chase, Jr. C.C., Coleman, S.W., Keisler, D.H., Weaber, R.L., Spiers, D.E., 2010. Evaluation of physiological and blood serum differences in heat-tolerant (Romosinuano) and heat-susceptible (Angus) Bos taurus cattle during controlled heat challenge, Journal of Animal Science, 88, 2321-2336.

    CAS  PubMed  Article  Google Scholar 

  • Scharf, B., Leonard, M.J., Weaber, R.L., Mader, T.L., Hahn, G.L., Spiers, D.E., 2011. Determinants of bovine thermal response to heat and solar radiation exposures in a field environment, International Journal of Biometeorology, 55, 469-480.

    PubMed  Article  Google Scholar 

  • Schuller, L.K., Michaelis, I., Heuwieser, W., 2017. Impact of heat stress on estrus expression and follicle size in estrus under field conditions in dairy cows, Theriogenology, 102, 48-53.

    CAS  PubMed  Article  Google Scholar 

  • Schutz, K.E., Cox, N.R., Matthews, L.R., 2008. How important is shade to dairy cattle? Choice between shade or lying following different levels of lying deprivation Applied Animal Behaviour Science, 114, 307-318.

    Article  Google Scholar 

  • Sejrsen, K., Fitzgerald, E.M., Tucker, H.A., Huber, J.T., 1980. Effect of plane of nutrition on serum prolactin and insulin in pre-and post-pubertal heifers, Journal of Dairy Science, 53, 326-327.

    Google Scholar 

  • Sengar, G.S., Deb, R., Singh, U., Raja, T.V., Kant, R., Sajjanar, B., Alex, R., Alyethodi, R.R., Kumar, A., Kumar, S., Singh, R., Jakhesara, S.J., Joshi, C.G., 2018. Differential expression of microRNAs associated with thermal stress in Frieswal (Bos taurus x Bos indicus) crossbred dairy cattle, Cell Stress and Chaperones, 23, 155-170.

    CAS  PubMed  Article  Google Scholar 

  • Shandilya, U.K., Sharma, A., Sodhi, M., Mukesh, M., 2020. Heat stress modulates differential response in skin fibroblast cells of native cattle (Bos indicus) and riverine buffaloes (Bubalus bubalis), Bioscience Reports, 40, BSR20191544.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Shearer, J.K., Beede, D.K., Bucklin, R.A., Bray, D.R., 1991. Environmental modifications to reduce heat stress in dairy cattle, Agri-Practice, 12, 7-18.

    Google Scholar 

  • Sheikh, A.A., Aggarwal, A., Indu, B., Aarif, O., 2017. Inorganic zinc supplementation modulates heat shock and immune response in heat stressed peripheral blood mononuclear cells of periparturient dairy cows, Theriogenology, 95, 75-82.

    CAS  PubMed  Article  Google Scholar 

  • Silva, R.G.D., Maia, A.S.C., 2011. Evaporative cooling and cutaneous surface temperature of Holstein cows in tropical conditions, Revista Brasileira de Zootecnia, 40:1143-1147.

    Article  Google Scholar 

  • Silva, D.C., Passini, R., 2017. Physiological responses of dairy cows as a function of environment in holding pen, Engenharia Agrícola, 37, 206-214.

    Article  Google Scholar 

  • Singh, S.P., Newton, W.M., 1978. Acclimatization of young calves to high temperatures: physiological responses, American Journal of Veterinary Research, 39, 795-797.

    CAS  PubMed  Google Scholar 

  • Singh, R., Singh, S.V., 2005. Variations in cutaneous temperature, physiological responses and blood biochemical in Karan Fries and Sahiwal heifers during solar exposure in summer, Indian Journal of Dairy Science, 58, 415-419.

    Google Scholar 

  • Singh, R., Singh, S.V., 2006. Circadian changes in peripheral temperature and physiological responses under solar exposure and shed during summer in Karan Fries heifers, Indian Journal of Animal Science, 76, 605-608.

    Google Scholar 

  • Singh, S.V., Upadhyay, R.C., Kundu, S.S., Vaidya, M.M., Singh, A.K., 2012. Leptin as a Metabolic and Energy Homeostatic Hormone in Dairy Animals: A Review, Indian Journal of Animal Nutrition, 29, 109-116.

    CAS  Google Scholar 

  • Singh, M., Lathwal, S.S., Kotresh, P.C., Choudhary, S., Barman, D., Keshri, A., Kumar, R., 2019. Health status of Hariana cattle (Bos indicus) in different seasons in its breeding tract of Haryana, India, Biological Rhythm Research, https://doi.org/10.1080/09291016.2019.1608729.

  • Smith, V.G., Hacker, R.R., Brown, R.G., 1977. Effect of alterations in ambient temperature on serum prolactin concentration in steers, Journal of Animal Science, 44, 645-649.

    CAS  PubMed  Article  Google Scholar 

  • Solano, L., Barkema, H.W., Pajor, E.A., Mason, S., LeBlanc, S.J., Nash, C.G.R., Haley, D.B., Pellerin, D., Rushen, J., de Passillé, A.M., Vasseur, E., Orsel, K., 2016. Associations between lying behavior and lameness in Canadian Holstein-Friesian cows housed in freestall barns, Journal of Dairy Science, 99, 2086-2101.

    CAS  PubMed  Article  Google Scholar 

  • Soley, M.J., Singh, S.V., 2003. Physiological, haematological and growth responses of crossbred male calves under two housing conditions, Indian Journal of Animal Science, 73, 202-203.

    Google Scholar 

  • Somparn, P., Gibb, M.J., Markvichitr, K., Chaiyabutr, N., Thummabood, S., Vajrabukka, C., 2004. Analysis of climatic risk for cattle and buffalo production in northeast Thailand, International Journal of Biometeorology, 49, 59-64.

    CAS  PubMed  Article  Google Scholar 

  • Spencer, R.L., Deak, T., 2017. A Users Guide to HPA Axis Research, Physiology and Behavior, 178, 43-65.

    CAS  PubMed  Article  Google Scholar 

  • Spiers, DE, Spain, JN, Sampson, JD, Rhoads, R.P., 2004. Use of physiological parameters to predict milk yield and feed intake in heat-stressed dairy cows, Journal of Thermal Biology, 29, 759-764.

  • Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., 2013. IPCC: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1535.

  • Stricker, E.M., Verbalis, J.G., 2013. Water and salt intake and body fluid homeostasis, In Fundamental Neuroscience (4th Edition), 783-797.

  • Tao, S., Thompson, I.M., Monteiro, A.P.A., Hayen, M.J., Young, L.J., Dahl, G.E., 2012. Effect of cooling heat-stressed dairy cows during the dry period on insulin response, Journal of Dairy Science, 95, 5035-5046.

    CAS  PubMed  Article  Google Scholar 

  • Tapki, D., Sahin, A., 2006. Comparison of the thermoregulatory behaviours of low and high producing dairy cows in a hot environment, Applied Animal Behaviour Science, 99, 1-11.

    Article  Google Scholar 

  • Taylor, N.A., Tipton, M.J., Kenny, G.P., 2014. Considerations for the measurement of core, skin and mean body temperatures, Journal of Thermal Biology, 46, 72-101.

    PubMed  Article  Google Scholar 

  • Thornton, P.K., 2010. Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2853-2867.

    Article  Google Scholar 

  • Torres-Junior, J.R.D.S., Pires, M.D.F.A., de Sa, W.F., Ferreira, A.D.M., Viana, J.H.M., Camargo, L.S.A., Ramos, A.A., Folhadella, I.M., Polisseni, J., de Freitas, C., Clemente, C.A.A., de Sa Filho, M.F., Paula-Lopes, F.F., Baruselli, P.S., 2008. Effect of maternal heat-stress on follicular growth and oocyte competence in Bos indicus cattle, Theriogenology, 69, 155-166.

    CAS  Article  Google Scholar 

  • Trout, J.P., McDowell, L.R., Hansen, P.J., 1998. Characteristics of the oestrous cycle and antioxidant status of lactating Holstein cows exposed to stress, Journal of Dairy Science, 81, 1244-1250.

    CAS  PubMed  Article  Google Scholar 

  • Tucker, H.A., Wetteman, R.P., 1976. Effects of ambient temperature and relative humidity on serum prolactin and growth in heifers, Proceedings of the Society for Experimental Biology and Medicine, 151, 623-626.

    CAS  PubMed  Article  Google Scholar 

  • Tucker, H.A., Chapin, L.T., Lookingland, K.J., Moore, K.E., Dahl, G.E., Evers, J.M., 1991. Temperature effects on serum prolactin concentrations and activity of dopaminergic neurons in the infundibulum/pituitary stalk of calves, Proceedings of the Society for Experimental Biology and Medicine, 197, 74-76.

    CAS  PubMed  Article  Google Scholar 

  • Tucker, C.B., Rogers, A.R., Schutz, K.E. 2008. Effect of solar radiation on dairy cattle behaviour, use of shade and body temperature in a pasture-based system. Applied Animal Behaviour Science, 109, 141-154.

    Article  Google Scholar 

  • Tullo, E., Mattachini, G., Riva, E, Finzi, A, Provolo, G., Guarino, M., 2019. Effects of Climatic Conditions on the Lying Behavior of a Group of Primiparous Dairy Cows, Animals, 9, 869.

    PubMed Central  Article  Google Scholar 

  • Turnpenny, J.R., Wathes, C.M., Clark, J.A., McArthur, A.J., 2000. Thermal balance of livestock, 2. Applications of a parsimonious model. Agricultural and Forest Meteorology, 101, 29-52.

    Article  Google Scholar 

  • Vaidya, M.M., Kumar, P., Singh, S.V., 2011. Circadian changes in heat storage and heat loss through sweating and panting in Karan Fries cattle during different seasons, Biological Rhythm Research, 43, 137-146.

    Article  Google Scholar 

  • Valente, E.E., Chizzotti, M.L., de Oliveira, C.V., Galvao, M.C., Domingues, S.S., de Castro Rodrigues, A., Ladeira, M.M., 2015. Intake, physiological parameters and behavior of Angus and Nellore bulls subjected to heat stress, Semina Ciencias Agrarias, 16, 4565-4574.

    Article  Google Scholar 

  • Vaught, L.W., Monty, D.W., Foote, W.C., 1977. Effect of summer heat stress on serum LH and progesterone values in Holstein-Frisian cows in Arizona, American Journal of Veterinary Research, 38, 1027-1032.

    CAS  PubMed  Google Scholar 

  • Vogler, C.J., Bame, J.H., DeJarnette, J.M., McGilliard, M.L., Saacke, R.G., 1993. Effects of elevated testicular temperature on morphology characteristics of ejaculated spermatozoa in the bovine, Theriogenology, 40, 1207-1219.

    Article  Google Scholar 

  • Von Borell, E.V., Langbein, J., Despres, G., Hansen, S., Leterrier, C., Marchant-Forde, J., Marchant, F.R., Minero, M., Mohr, E., Prunier, A., Valance, D., Veissier, I., 2007. Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals - A review, Physiology and Behavior, 92, 293-316.

    Article  CAS  Google Scholar 

  • Wang, J., Katawatin, S., Suklerd, S., Pongthaisong, P., 2012. Skin morphology of Thai native cattle, Khon Kaen Agriculture Journal, 40, 392-394.

    Google Scholar 

  • Weitzel, J.M., Viergutz, T., Albrecht, D., Bruckmaier, R., Schmicke, M., Tuchscherer, A., Koch, F., Kuhla, B., 2017. Hepatic thyroid signaling of heat-stressed late pregnant and early lactating cows, Journal of Endocrinology, 234, 129-141.

    CAS  Article  Google Scholar 

  • West, J.W., 2003. Effects of Heat-Stress on Production in Dairy Cattle, Journal of Dairy Science, 86, 2131-2144.

    CAS  PubMed  Article  Google Scholar 

  • Wettemann, R.P., Tucker, H.A., 1974. Relationship of Ambient Temperature to Serum Prolactin in Heifers, Proceedings of the Society for Experimental Biology and Medicine, 146, 908-911.

    CAS  PubMed  Article  Google Scholar 

  • Wettemann, R.P., Tucker, H.A., Beck, T.W., Meyerhoeffer D.C., 1982. Influence of ambient temperature on prolactin concentrations in serum of Holstein and Brahman x Hereford heifers, Journal of Animal Science, 55, 391-394.

    CAS  Article  Google Scholar 

  • Wheelock, J.B., Rhoads, R.P., Vanbaale, M.J., Sanders, S.R., Baumgard, L.H., 2010. Effects of heat stress on energetic metabolism in lactating Holstein cows, Journal of Dairy Science, 93, 644-655.

    CAS  PubMed  Article  Google Scholar 

  • Wilson, S.J., Marion, R.S., Spain, J.N., Spiers, D.E., Keisler, D.H., Lucy, M.C., 1998. Effects of controlled heat stress on ovarian function of dairy cattle, 1. Lactating Cows. Journal of Dairy Science, 81, 2124-2131.

    CAS  PubMed  Article  Google Scholar 

  • Wise, M.E., Armstrong, D.V., Huber, J.T., Hunter, R., Wiersma, F., 1988. Hormonal alterations in the lactating dairy cow in response to thermal stress, Journal of Dairy Science, 71, 2480-2485.

    CAS  PubMed  Article  Google Scholar 

  • Wolfenson, D., Lew, B.J., Thatcher, W.W., Graber, Y., Meidan, R., 1997. Seasonal and acute heat stress effects on steroid production by dominant follicles in cow, Animal Reproduction Science, 47, 9-19.

    CAS  PubMed  Article  Google Scholar 

  • Wolfenson, D., Roth, Z., Meidan, R., 2000. Impaired reproduction in heat stressed cattle: Basic and applied aspects, Animal Reproduction Science, 60-61, 535-547.

    CAS  PubMed  Article  Google Scholar 

  • Yadav, B., Singh, G., Verma, A.K., Dutta, N., Sejian, V., 2013. Impact of heat stress on rumen functions, Veterinary World, 6, 992-996.

    Article  Google Scholar 

  • Yadav, B., Singh, G., Wankar, A., 2015. Adaptive capability as indicated by redox status and endocrine responses in crossbred cattle exposed to thermal stress, Journal of Animal Science, 5, 67-73.

    Google Scholar 

  • Yadav, B., Singh, G., Wankar, A., Dutta, N., Chaturvedi, V.B., Verma, M.R., 2016. Effect of simulated heat stress on digestibility, methane emission and metabolic adaptability in crossbred cattle, Asian-Australasian Journal of Animal Science, 29, 1585-1592.

    CAS  Article  Google Scholar 

  • Yadav, B., Singh, G., Wankar, A., 2017. The use of infrared skin temperature measurements for monitoring heat stress and welfare of crossbred cattle, Indian Journal of Dairy Science, 70, 127-131.

    Google Scholar 

  • Yadav, B., Singh, G., Wankar, A., 2021. Acclimatization dynamics to extreme heat stress in crossbred cattle. Biological Rhythm Research, 52, 524-534. https://doi.org/10.1080/09291016.2019.16127.

  • Yeck, R.G., Kibler, H.H., 1958. Predicting heat tolerance from calf vaporization rates, Journal of Animal Science, 17, 1228-1229.

    Google Scholar 

  • Younas, M., Fuquay, J.W., Smith, A.E., Moore, A.B., 1993. Estrus and endocrine responses of lactating Holsteins to forced ventilation during summer, Journal of Dairy Science, 76, 430-434.

    CAS  PubMed  Article  Google Scholar 

  • Yousef, J.L.M., Habeeb, A.A., EL-Kousey, H., 1997. Body weight gain and some physiological changes in Friesian calves protected with wood or reinforced concrete sheds during hot summer season of Egypt, Egyptian Journal of Animal Production, 34, 89-101.

    Article  Google Scholar 

  • Zhang, F.J., Weng, G., Wang, J.F., Zhou, D., Zhang, W., Zhai, C.C., Hou, Y.X., Zhu, Y.H., 2014. Temperature humidity index and chromium supplementation on antioxidant activity, heat shock protein 72, and cytokine response of lactating cows, Journal of Animal Science, 92, 3026-3034.

    CAS  PubMed  Article  Google Scholar 

Download references

Code availability

Not applicable

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

S. R. Mishra had written and revised the manuscript.

Corresponding author

Correspondence to S.R. Mishra.

Ethics declarations

Ethics approval

The manuscript does not contain clinical studies or patient data and thus no ethics approval is required.

Consent to participate

Not applicable

Consent for publication

Yes

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mishra, S. Behavioural, physiological, neuro-endocrine and molecular responses of cattle against heat stress: an updated review. Trop Anim Health Prod 53, 400 (2021). https://doi.org/10.1007/s11250-021-02790-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-021-02790-4

Keywords

  • Thermoregulatory responses
  • Cattle
  • Heat stress