Feed intake, digestibility, and energy contents in growing bull fed pineapple crop waste silage in different planes of nutrition

Abstract

The objective of this study was to nutritionally evaluate the use of pineapple crop waste silage in the feeding of growing bull in different planes of nutrition. We used eight non-castrated growing bull housed in individual covered pens, provided with free access to water and individual trough. Two balanced Latin squares conducted simultaneously were used. Treatments consisted of four planes of nutrition (L), formed by multiples of maintenance, i.e., L = ME/Mm; they were ME/Mm, ME/1.5Mm, ME/2Mm, and ME/2.7Mm. The intake of nutrients in diets was determined by the difference between the total mass of food offered and the mass of orts. To determine nutrient digestibility and nitrogen balance, total feces, and urine, collections were performed for seven consecutive days in each animal per period. The increase in planes of nutrition affected (P < 0.05) nutrient intake between L = 1 and L = 1.5. However, there was no effect nutrients intake to 1.5, 2, and 2.7. Nutrient digestibility was affected by the increase in planes of nutrition (P < 0.05), except for dCF (P = 0.0659). Digestible and metabolizable energies were affected (P < 0.05) by the increase in nutritional plans, as well as nitrogen balance. In conclusion, the pineapple crop waste silage presents itself as a good forage alternative for cattle diets, especially during forage shortage periods. Inclusion in the diet at 2.7 × the maintenance level does not compromise growing bull performance. However, the increases in planes of nutrition reduce the digestible energy contents of the diet.

This is a preview of subscription content, access via your institution.

Fig 1

References

  1. Agricultural and Food Research Council (AFRC). 1993. An advisory manual prepared by the AFRC technical committee on responses to nutrients. Commonwealth Agricultural Bureau International, Cambridge, UK.

    Google Scholar 

  2. Agricultural Research Council (ARC) 1980. The nutrient requirements of ruminants livestock. London: Commonwealth agricultural Bureaux.

    Google Scholar 

  3. Almeida, J. C. S., Figueiredo, D. M., Azevedo, K. K., Paixão, M. L., Ribeiro, E. G. and Dallago, G. M. 2018. Intake, digestibility, microbial protein production, and nitrogen balance of lambs fed with sorghum silage partially replaced with dehydrated fruit by-products. Tropical Animal Health and Production, 51, 619-627. https://doi.org/10.1007/s11250-018-1734-0

    Article  PubMed  Google Scholar 

  4. Alves, G. R., Fontes, C. A. A., Fernandes, A. M., Processi, E. F., Oliveira, T. S., Glória, L. S. and Gomes, R. S. 2016. Intake and digestibility of silages containing pineapple pulp and coast-cross hay with or without urea and markers recovery in sheep. Revista Brasileira de Zootecnia, 45, 151-157. https://doi.org/10.1590/S1806-92902016000400002.

    Article  Google Scholar 

  5. Associação Brasileira dos Produtores Exportadores de Frutas e Derivados (Abrafrutas). In: Associação Brasileira dos Produtores Exportadores de Frutas e Derivados. 2019. https://abrafrutas.org/2019/03/07/brasil-e-o-terceiro-maior-produtor-de-frutas-do-mundo-diz-abrafrutas/Brasil é o terceiro maior produtor de frutas do mundo. Accessed 3 Mar 2020.

  6. Association of Official Analytical Chemists (AOAC). 1990. Official method of analysis. 15th ed. Washington, DC, USA: Association of Official Analytical Chemists.

    Google Scholar 

  7. Bannink A., Van Lingen H.J., Ellis J.L., France J. and Dijkstra J. 2016. The contribution of mathematical modeling to understanding dynamic aspects of rumen metabolism. Frontiers in Microbiology, 7, 1-16. https://doi.org/10.3389/fmicb.2016.01820.

    Article  Google Scholar 

  8. Blaxter, K.L. and Boyne, A.W. 1970. A new method of expressing the nutritive value of feeds as sources of energy, in: Schurch, A., Wenk, C. (Eds.), Energy Metabolism of Farm Animals. 5th Symposium Vitznau, Zurich, pp.9-13.

  9. Blaxter, K.L. and Clapperton, J.L. 1965. Prediction of amount of methane produced by ruminants. British Journal of Nutrition, 19, 511-522. https://doi.org/10.1079/bjn19650046.

    CAS  Article  Google Scholar 

  10. Burnham, K.P. and Anderson, D.R. 2004. Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research, 33, 261-304. https://doi.org/10.1177/0049124104268644

    Article  Google Scholar 

  11. Clark, J.H., Klusmeyer, T.H. and Cameron, M.R. 1992. Microbial Protein Synthesis and Flows of Nitrogen Fractions to the Duodenum of Dairy Cows. Journal of Dairy Science, 75, 2304-2323. https://doi.org/10.3168/jds.S0022-0302(92)77992-2.

    CAS  Article  PubMed  Google Scholar 

  12. Clauss, M., Stewart, M., Price, E., Peilon, A., Savage, T., Van Ekris, I. and Munn, A. 2016. The effect of feed intake on digesta passage, digestive organ fill and mass, and digesta dry matter content in sheep (Ovis aries): Flexibility in digestion but not in water reabsorption. Small Ruminant Research, 138, 12-19. https://doi.org/10.1016/j.smallrumres.2016.03.029.

    Article  Google Scholar 

  13. Felton, C.A. and DeVries T.J. 2010. Effect of water addition to a total mixed ration on feed temperature, feed intake, sorting behavior, and milk production of dairy cows. Journal of Dairy Science, 93, 2651–2660. https://doi.org/10.3168/jds.2009-3009.

    CAS  Article  PubMed  Google Scholar 

  14. Forbes, J. 2007. Voluntary Food Intake and Diet Selection of Farm Animals. 2nd edition. Commonwealth Agricultural Bureau International, Leeds, UK.

    Book  Google Scholar 

  15. Gowda, N.K.S., Vallesha, N.C., Awachat, V.B., Anandan, S., Pal, D.T and Prasad, C.S. 2015. Study on evaluation of silage from pineapple (Ananas comosus) fruit residue as livestock feed. Tropical Animal Health and Production, 47, 557–561. https://doi.org/10.1007/s11250-015-0762-2.

    Article  PubMed  Google Scholar 

  16. Hackmann, T.J. and Firkins, J.L. 2015. Maximizing efficiency of rumen microbial protein production. Frontiers Microbiology, 6, 1-16. https://doi.org/10.3389/fmicb.2015.00465

    Article  Google Scholar 

  17. Hristov, A.N., Bannink, A., Crompton, L.A., Huhtanen, P., Kreuzer, M., McGee, M., Nozière, P., Reynolds, C.K., Bayat, A.R., Yáñez-Ruiz, D.R., Dijkstra, J., Kebreab, E., Schwarm, A., Shingfield, K.J. and Yu, Z. 2019. Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques. Journal of Dairy Science, 102, 5811-5852. https://doi.org/10.3168/jds.2018-15829.

    CAS  Article  PubMed  Google Scholar 

  18. IAC, 2018. Abacaxi IAC Gomo-de-mel. Instituto Agronômico. http://www.iac.sp.gov.br/cultivares/inicio/Folders/Abacaxi/cIACGomo-de-Mel.htm (accessed 10 April 2020).

  19. Institut National de la Recherche Agronomique (INRA). 1978. Alimentation des ruminants. INRA Publications, Versailles, FR.

    Google Scholar 

  20. Kongphitee, K., Sommart, K., Phonbumrung, T., Gunha, T. and Suzuki, T. 2018. Feed intake, digestibility and energy partitioning in beef cattle fed diets with cassava pulp instead of rice straw. Asian-Australisian Journal of Animal Science, 31, 1431–1441. https://doi.org/10.5713/ajas.17.0759.

    CAS  Article  Google Scholar 

  21. Lallo, F.H., Prado, I.N., Nascimento, W.G., Zeoula, L.M., Moreira, F.B. and Wada, F.Y. 2003. Níveis de substitução da silagem de milho pela silagem de resíduos industriais de abacaxi sobre a degradabilidade ruminal em bovinos de corte. Revista Brasileira de Zootecnia, 32, 719-726. https://doi.org/10.1590/S1516-35982003000300024.

    Article  Google Scholar 

  22. Lasdon, L.S., Waren, A.D., Jain, A. and Ratner, M. 1978. Design and testing of a generalized reduced gradient code for nolinear programming. ACM Transactions on Mathematical Software, 4, 34-50. https://doi.org/10.1145/355769.355773.

    Article  Google Scholar 

  23. Leonardi, C., Giannico, F. and Armentano, L. E. 2005. Effect of water addition on selective consumption (sorting) of dry diets by dairy cattle. Journal of Dairy Science, 88, 1043–1049. https://doi.org/10.3168/jds.S0022-0302(05)72772-7.

    CAS  Article  PubMed  Google Scholar 

  24. Littell, R.C., Milliken, G.A., Stroup, W.W., Wolfinger, R.D. and Schabenberger, O. 2006. SAS® for Mixed Models, SAS Institute Inc., Cary, USA.

    Google Scholar 

  25. Lucas, H. L. 1957. Extra-period Latin-squarechange-over designs. Journal of Dairy Science, 40, 225-239. https://doi.org/10.3168/jds.S0022-0302(57)94469-7.

    Article  Google Scholar 

  26. Mertens, D.R. 1987. Predicting Intake and Digestibility Using Mathematical Models of Ruminal Function. Journal of Animal Science, 64, 1548–1558. doi:https://doi.org/10.2527/jas1987.6451548x.

    CAS  Article  PubMed  Google Scholar 

  27. Mertens, D.R. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC International, 517, 1217-1240.

    Google Scholar 

  28. National Research Council (NRC). 2001. Nutrient requirements of dairy cattle. 7th ed. National Academic Press, Washington, DC, USA.

    Google Scholar 

  29. Ososanya, T. O., Adewumi, M. K. and Jinadu, K. B. 2014. Impact of pineapple waste silage on intake, digestibility and fermentation patterns of West African Dwarf sheep. African Journal of Biotechnology, 13, 2575-2581. https://doi.org/10.5897/AJB2013.12930.

    Article  Google Scholar 

  30. Reid, J.T., White, O.D., Anrique, R. and Fortin, A. 1980. Nutritional Energetics of Livestock: some present boundaries of knowledge and future research needs. Journal of Animal Science, 51, 1393 – 1415. https://doi.org/10.2527/jas1981.5161393x.

    Article  Google Scholar 

  31. Russell, J.B., O’Connor, J.D., Fox, D.G., Van Soest, P.J. and Sniffen, C.J. 1992. A net Carbohydrate and Protein System for Evaluating Cattle Diets. 1. Ruminal fermentation. Journal of Animal Science, 70, 3551- 3561. https://doi.org/10.2527/1992.70113551x.

    CAS  Article  PubMed  Google Scholar 

  32. Santos, S.C., Fernandes, J.J.R., Carvalho, E.R., Gouvea, V.N., Lima, M.M. and Dias, M.J. 2014. Utilização da silagem de restos culturais do abacaxizeiro em substituição à silagem de cana-de-açúcar na alimentação de ovinos. Ciência Animal Brasileira, 15, 400-408. https://doi.org/10.1590/1089-6891v15i422937.

    Article  Google Scholar 

  33. Schwab, C.G. and Broderick, G.A. 2017. A 100-Year Review: Protein and amino acid nutrition in dairy cows. Journal of Dairy Science, 100, 10094-10112. https://doi.org/10.3168/jds.2017-13320.

    CAS  Article  PubMed  Google Scholar 

  34. Silva, D.J. and Queiroz, A.C. 2006. Análise de alimentos: métodos químicos e biológicos. 3rd ed. UFV Press, Viçosa, Brazil.

    Google Scholar 

  35. Sniffen, C.J., O’Connor, J.D., Van Soest, P.J., Fox, D.G. and Russell, J.B. 1992. A Net Carbohydrate and Protein System for Evaluating Cattle Diets: II. Carbohydrate and Protein Availability. Journal of Animal Science, 70, 3562-3577. https://doi.org/10.2527/1992.70113562x.

    CAS  Article  PubMed  Google Scholar 

  36. Sugiura, N., 1978. Further analysis of the data by Akaike’s Information Criterion and the finite corrections. Communications in Statistics – Theory and Methods, 7, 13-26. 1978. https://doi.org/10.1080/03610927808827599

    Article  Google Scholar 

  37. Taiz, L., Zeiger, E., Møller, I. M. and Murphy, A. 2018. Plant Physiology and Development. Sixth Edition. Oxford University Press, Oxford, UK.

    Google Scholar 

  38. Tedeschi, L.O., Fox, D.G., Fonseca, M.A. and Cavalcanti, L.F.L. 2015. Models of protein and amino acid requirements for cattle. Revista Brasileira de Zootecnia, 44, 109-132. https://doi.org/10.1590/S1806-92902015000300005.

    Article  Google Scholar 

  39. Tempelman, R.J., 2004. Experimental design and statistical methods for classical and bioequivalence hypothesis testing with an application to dairy nutrition studies. Journal of Animal Science, 82, 162-172. https://doi.org/10.2527/2004.8213_supplE162x.

    Article  Google Scholar 

  40. Thiex, N.J., Manson, H., Anderson, S. and Persson, J.A. 2002. Determinantion of crude protein in animal feed, forage, grain, and oilseeds by using block digestion with a copper catalyst and steam distrillation into boric acid: collaborative study. Journal of AOAC International, 85, 309-317.

    CAS  Article  Google Scholar 

  41. Thiex, N. J., Anderson, S. and Gildemeister, B. 2003. Crude fat, hexanes extraction, in feed, cereal grain, and forage (Randall/soxtec/submersion method): collaborative study. Journal of AOAC International, 86, 899-908.

    CAS  Article  Google Scholar 

  42. Upadhyay, A., Lamba, J.P. and Tawata, S. 2010. Utilization of pineapple waste: a review. Journal of Food Science and Technology Nepal, 6, 10-17. https://doi.org/10.3126/jfstn.v6i0.8255.

    Article  Google Scholar 

  43. Valkeners, D., Thewis, A., Piron, F. and Beckers, Y. 2004. Effect of imbalance between energy and nitrogen supplies on microbial protein synthesis and nitrogen metabolism in growing double-muscled Belgian Blue bulls. Journal of Animal Science, 82, 1818-1825. https://doi.org/10.2527/2004.8261818x.

    CAS  Article  PubMed  Google Scholar 

  44. Van Soest, P.J. 1965. Symposium on factors influencing the voluntary intake of herbage by ruminants: voluntary intake in relation to chemical composition and digestibility. Journal of Animal Science, 24, 834-843. https://doi.org/10.2527/jas1965.243834x.

    Article  Google Scholar 

  45. Van Soest, P.J. 1994. Nutritional Ecology of The Ruminant. 2rd ed. Cornell University Press, Ithaca, USA.

    Book  Google Scholar 

  46. Yang, J.Y., Seo, J., Kim, H.J., Seo, S. and Ha, J.K. 2010. Nutrient Synchrony: Is it a suitable strategy to improve nitrogen utilization and animal performance? Asian-Australisian Journal of Animal Science, 23, 972-979. https://doi.org/10.5713/ajas.2010.r.04.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tadeu S. de Oliveira.

Ethics declarations

Research involving human participants and/or animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mello, B.L.B., Fernandes, A.M., de Oliveira, T.S. et al. Feed intake, digestibility, and energy contents in growing bull fed pineapple crop waste silage in different planes of nutrition. Trop Anim Health Prod 53, 188 (2021). https://doi.org/10.1007/s11250-021-02640-3

Download citation

Keywords

  • By-product
  • Level of feeding
  • Nutritional characterization
  • Ruminants