Viability of the use of mycotoxin adsorbent in the finishing of Texel lambs in confinement

Abstract

The objective of the present study was to evaluate the viability of a mycotoxin adsorbent based on beta-glucans from cell walls of Saccharomyces cerevisiae and bentonites in the diets of confined lambs of the Texel breed. Twenty-four lambs (12 males and 12 females) with an average weight of 18.6 kg ± 1.6 were divided into two groups: treated (with adsorbent) and control. The animal diets contained the mycotoxins aflatoxin B1, fumonisin B1 and B2, zearalenone, and deoxynivalenol in concentrations within guidance levels. The animals were slaughtered with body weight of approximately 26.4 kg. The performance and carcass variables of the lambs were evaluated. The daily weight gain was higher in the treated group (216.24 g) than in the control group (185.90 g). The averages for loin eye area, subcutaneous fat thickness, and marbling were 13.93 cm2, 2.66 mm, and 3.20 in the treated group and 12.16 cm2, 2.6 mm, and 3.25 in the control group, respectively. The true, hot, and cold carcass yield, and the carcass cooling losses did not differ between groups. The carcasses were similar in conformation and fat finishing degree, with averages of 3.95 and 3.83, respectively. To the best of our knowledge, this is the first study to evaluate the effect of a mycotoxin additive in the diet of finishing lambs. The use of mycotoxin adsorbent in confined lambs was feasible, and its use resulted in greater daily weight gain in lambs and average net profit.

This is a preview of subscription content, access via your institution.

Data availability

Not applicable.

References

  1. Agricultural Research Council (ARC) 1980. The nutrient requirements of ruminant livestock. Commonwealth Agricultural Bureaux, London.

    Google Scholar 

  2. American Meat Science Association (AMSA), 2001. Meat evaluation handbook. American Meat Science Association, Savoy, IL.

    Google Scholar 

  3. Association of Official Analytical Chemists (AOAC), 1998. Official methods of analysis. Association of Official Analytical Chemists, Washington, DC.

    Google Scholar 

  4. Bueno, D.J., Casale, C.H., Pizzolitto, R.P., Salano, M.A., Olivier, G., 2006. Physical adsorption of aflatoxin B1 by lactic acid bacteria and Saccharomyces cerevisiae: A theoretical model. Journal of Food Protection, 70, 2148-2154. DOI: https://doi.org/10.4315/0362-028X-70.9.2148.

    Article  Google Scholar 

  5. Cação, M., Santos, G., Cavaletti, M. Bueno, M.S., Nardon, R.F., Pereira, J.A., 2014. Replacement of soybean meal by soybean cleaning residue on finishing lamb diets. Boletim de Indústria Animal, 71, 106-113. DOI: https://doi.org/10.17523/bia.v71n2p106.

    Article  Google Scholar 

  6. Cañeque, V., Sañudo, C., 2000. Metodologia para el Estúdio de la Calidad de la Canal y de la Carne em Ruminantes. INIA, Madrid.

    Google Scholar 

  7. Capelle, E.R., Valadares Filho, S.C., Silva, J.F.C., Cecon, P.R., 2001. Estimates of the energy value from chemical characteristics of the feedstuffs. Brazilian Journal of Animal Science, 30, 1837-1856. DOI: https://doi.org/10.1590/S1516-35982001000700022.

    Article  Google Scholar 

  8. Carvalho, S., Dias, F.D., Pires, C.C. Wommer, T.P., Venturini, R.S., Frasson, M.F., Pilecco, V.M., Moro, A.B., Brutt, D.D., 2015. Intake and productive performance of lambs of races Texel and Ideal, in feedlot diets containing different levels of soybean hulls. Semina: Ciências Agrárias, 36, 2131-2140. DOI: https://doi.org/10.5433/1679-0359.2015v36n3Supl1p2131.

    Article  Google Scholar 

  9. Chegeni, A., Li, Y.L., Deng, K.D., Jiang, C.G., Diao, Q.Y., 2013. Effect of dietary polymer-coated urea and sodium bentonite on digestibility, rumen fermentation, and microbial protein yield in sheep fed high levels of corn stalk. Livestock Science, 157, 141-150. DOI: https://doi.org/10.1016/j.livsci.2013.07.001

    Article  Google Scholar 

  10. Čolović, R., Puvača, N., Cheli, F., Avantaggiato, G., Greco, D., Đuragić, O., Jovana Kos, J., Luciano Pinotti, L., 2019. Decontamination of mycotoxin-contaminated feedstuffs and compound feed. Toxins, 11, 617. DOI: https://doi.org/10.3390/toxins11110617

    CAS  Article  PubMed Central  Google Scholar 

  11. Dänicke, S., Matthäus, K., Lebzien, P., Valenta, H., Stemme, K., Ueberschär, K.H., Razzazi-Fazeli, E., Böhm, J., Flachowsky, G., 2005. Effects of Fusarium toxin-contaminated wheat grain on nutrient turnover, microbial protein synthesis and metabolism of deoxynivalenol and zearalenone in the rumen of dairy cows. Journal of Animal Physiology and Animal Nutrition, 89, 303-315. DOI: https://doi.org/10.1111/j.1439-0396.2005.00513.x.

    CAS  Article  PubMed  Google Scholar 

  12. EC, 2003. Commission Directive 2003/100/ EC of 31 October 2003 amending Annex I to Directive 2002/32/ EC of the European Parliament and of the Council on undesirable substances in animal feed. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ%3AL%3A2003%3A285%3A0033%3A0037%3AEN%3APDF. Accessed 05 May 2019.

  13. EC, 2006. Commission recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:229:0007:0009:EN:PDF. Accessed 05 May 2019).

  14. EC 2009. Commission regulation (EC) No 386/2009 of 12 May 2009 amending Regulation (EC) No 1831/2003 of the European Parliament and of the Council as regards the establishment of a new functional group of feed additives. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:118:0066:0066:EN:PDF. Accessed 05 May 2019.

  15. Fink-Gremmels, J., 2008. The role of mycotoxins in the health and performance of dairy cattle. The Veterinary Journal, 176, 84-92. DOI: https://doi.org/10.1016/j.tvjl.2007.12.034

    CAS  Article  PubMed  Google Scholar 

  16. Galvano, F., Piva, A., Ritieni, A., Galvano, G., 2001. Dietary strategies to counteract the effects of mycotoxins: a review. Journal of Food Protection, 64, 120-131. DOI: https://doi.org/10.4315/0362-028X-64.1.120.

    CAS  Article  PubMed  Google Scholar 

  17. Hussein, H.S., Brasel, J.M., 2001. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology, 167, 101-134. DOI: https://doi.org/10.1016/S0300-483X(01)00471-1.

    CAS  Article  PubMed  Google Scholar 

  18. Junkuszew, A., Ringdorfer, F., 2005. Computer tomography and ultrasound measurement at methods for the body composition of lambs. Small Ruminant Research, 56, 121-125. DOI: https://doi.org/10.1016/j.smallrumres.2004.03.008

    Article  Google Scholar 

  19. Kiessling, K.H., Pettersson, H., Sandholm, K., Olsen, M., 1984. Metabolism of aflatoxin, ochratoxin, zearalenone, and three trichothecenes by intact rumen fluid, rumen protozoa, and rumen bactéria. Applied and Environmental Microbiology, 47, 1070-1073. DOI: https://doi.org/10.1128/AEM.47.5.1070-1073.1984

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Lima, L.D., Rego, F.C.A, Koetz Junior, C., Ribeiro, E.L.A., Constantino, C., Belan, L., Gasparini, M.J., Sanchez, A.F., Zundt, M., 2013. Interference from high-grain diet on carcass and meat characteristics of Texel lambs. Semina: Ciências Agrárias, 34, 4053-4064. DOI: https://doi.org/10.5433/1679-0359.2013v34n6Supl2p4053.

  21. Luo, Y., Wang, Z.L., Yuan, Y.H., Zhou, Z.K., Yue, T.L., 2016. Patulin adsorption of a superior microorganism strain with low flavor-affection of kiwi fruit juice. World Mycotoxin Journal, 9, 195-203. DOI: https://doi.org/10.3920/WMJ2014.1874.

    CAS  Article  Google Scholar 

  22. Marin, S., Ramos, A.J., Cano-Sancho, G., Sanchis, V., 2013. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology, 60, 218-237. DOI: https://doi.org/10.1016/j.fct.2013.07.047.

    CAS  Article  PubMed  Google Scholar 

  23. Milliken, G.A., Johnson, D.E., 2002. Analysis of Messy Data. Volume 3: Analysis of covariance. Chapman & Hall, London, UK.

    Google Scholar 

  24. Mizubuti I.Y., Pinto A.P., Ramos B.M.O., Pereira E.S., 2009. Métodos laboratoriais de avaliação de alimentos para animais. Eduel, Londrina, PR, 228p.

    Google Scholar 

  25. Mora, N.H.A.P., Macedo, F.A.F., Mexia, A.A., Dias-Senegalhe, F.B., Oliveira, E.Q., Radis, A.C., 2015. Carcass characteristics of Pantaneiro lambs slaughtered with diferente subcutaneous fat thickness. Brazilian Journal of Veterinary and Animal Sciences, 67, 290-298. DOI: https://doi.org/10.1590/1678-7319.

    Article  Google Scholar 

  26. National Research Council (NRC) 2007. Nutrient requeriments of small ruminants, National Academy, Washington, DC.

    Google Scholar 

  27. Oliveira, C.A., Millen, D.D., 2014. Survey of the nutritional recommendations and management practices adopted by feedlot cattle nutritionists in Brazil. Animal Feed Science and Technology,197, 64-75. DOI: https://doi.org/10.1016/j.anifeedsci.2014.08.010

    Article  Google Scholar 

  28. Osório, J.C.S., 2014. Produção e qualidade da carne ovina. In: Selaive-Villaroel, A.B., Osório, J.C.S, Produção de ovinos no Brasil. Roca, São Paulo, SP, 634p.

  29. Osório, J.C.S.; Osório, M.T.M., 2005. Produção de carne ovina: técnicas de avaliação in vivo e na carcaça. UFPEL, Pelotas, RS, 82p.

    Google Scholar 

  30. Peng, W.X., Marchal, J.L.M., van der Poel, A.F.B., 2018. Strategies to prevent and reduce mycotoxins for compound feed manufacturing. Animal Feed Science and Technology, 237, 129-153. DOI: https://doi.org/10.1016/j.anifeedsci.2018.01.017.

    CAS  Article  Google Scholar 

  31. Pethick, D.W., D'Souza, D.N., Dunshea, F.R., 2005. In: Dijkstra, J., Forbes, J.M., France, J. Quantitative aspects of ruminant digestion and metabolism. Second ed., CABI Publishing, Oxford, 345-371.

    Google Scholar 

  32. Pinotti, L., Dell’orto, V., 2011. Feed safety in the feed supply chain. Biotechnology, Agronomy, Society and Environment, 15, 9-14.

    Google Scholar 

  33. Pinotti, L., Ottoboni, M., Giromini, C., Dell’Orto, V., Cheli, F., 2016. Mycotoxin Contamination in the EU Feed Supply Chain: A Focus on Cereal Byproducts, Toxins, 8, 45. DOI:https://doi.org/10.3390/toxins8020045

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2019. URL https://www.R-project.org/.

  35. Rodrigues, I., 2014. A review on the effects of mycotoxins in dairy ruminants. Animal Production Science, 54, 1155–1165. DOI: https://doi.org/10.1071/AN13492

    CAS  Article  Google Scholar 

  36. Rodrigues, I., Naehrer, K., 2012. A three-year survey on the worldwide occurrence of mycotoxins in feedstuffs and feed. Toxins, 4, 663-675. DOI: https://doi.org/10.3390/toxins4090663.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Santovito, E., Greco, D., Logrieco, A.F., Avantaggiato, G., 2018. Eubiotics for food security at farm level: yeast cell wall products and their antimicrobial potential against pathogenic bacteria. Foodborne Pathology Disease, 15, 531-537. DOI: https://doi.org/10.1089/fpd.2018.2430.

    Article  Google Scholar 

  38. Sañudo, C., Sierra, I., 1986. Calidad de la canal en la especie ovina. Ovino 11, 127-153.

    Google Scholar 

  39. Silva Sobrinho, A.G., 2001. Criação de ovinos, second ed. Funep, Jaboticabal, SP, 302p.

    Google Scholar 

  40. Silva, F.A.S., Valadares Filho, S.C., Godoi, L.A., Silva, B.C., Pacheco, M.V.C., Zanetti, D., Benedeti, P.D.B., Silva, F.F., Felix, T.L., 2020. Effect of duration of restricted-feeding on nutrient excretion, animal performance, and carcass characteristics of Holstein x Zebu finishing steers. Animal Production Science, 60, 535–544. DOI: https://doi.org/10.1071/AN18300

    CAS  Article  Google Scholar 

  41. Smith, M.C., Madec, S., Coton, E., Hymery, N., 2016. Natural Co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins, 8, 94. DOI: https://doi.org/10.3390/toxins8040094.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Streit, E., Naehrer, K., Rodrigues, I., Schatzmayr, G., 2013. Mycotoxin occurrence in feed and feed raw materials worldwide: Long-term analysis with special focus on Europe and Asia. Journal of the Science of Food and Agriculture, 93, 2892-2899. DOI: https://doi.org/10.1002/jsfa.6225.

    CAS  Article  PubMed  Google Scholar 

  43. Tibo, G.C., 1999. Níveis de concentrado na dieta de novilhos F1 simental x nelore: consumo, digestões totais e parciais e eficiência microbiana. (unpublished Master’s Dissertation, Universidade Federal de Viçosa)

  44. Véras, R.M.L., Ferreira, M.A., Cavalcante, C.V.A., Véras, A.S.C., Carvalho, F.F.R., Santos, G.R.A., Alves, K.S., Maior Júnior, R.J.S., 2005. Replacement of corn by forage cactus meal in growing lambs diets. Performance. Brazilian Journal of Animal Science, 34, 249-256. DOI: https://doi.org/10.1590/S1516-35982005000100029.

    Article  Google Scholar 

  45. Volman, J.J., Ramakers, J.D., Plat, J., 2008. Dietary modulation of immune function by β-glucans. Physiology & Behavior, 94, 276-284. DOI: https://doi.org/10.1016/j.physbeh.2007.11.045.

    CAS  Article  Google Scholar 

  46. Yiannikouris, A., Poughon, L., Cameleyre, X., Dussap, C.G., François, J., Bertin, G., Jouany, J.P., 2003. A novel technique to evaluate interactions between Saccharomyce cerevisiae cell wall and mycotoxins: application to zearalenone. Biotechnology Letters, 25, 783-789. DOI: https://doi.org/10.1023/A:1023576520932.

    CAS  Article  PubMed  Google Scholar 

  47. Yiannikouris, A., Francois, J., Poughon, L., Dussap, C.G., Bertin, G., Jeminet, G., Jouany, J.P., 2004. Alkali extraction of β-Dglucans from Saccharomyces cerevisiae cell wall and study of their adsorptive properties toward zearalenone. Journal of Agricultural and Food Chemistry, 52, 3666-3673. DOI: https://doi.org/10.1021/jf035127x.

    CAS  Article  PubMed  Google Scholar 

  48. Zain, M.E., 2011. Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society, 15, 129-144. DOI: https://doi.org/10.1016/j.jscs.2010.06.006

    CAS  Article  Google Scholar 

Download references

Code availability

Not applicable.

Funding

This study received financial support from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Finance code 001).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Simone Fernanda Nedel Pertile.

Ethics declarations

Ethics approval

The experiment was conducted according to the ethical principles of animal experimentation, and the experimental protocols were reviewed and approved by the ethics committee for the use of animals of UNOPAR University (CEUA 016/16).

Consent to participate

All the authors consent to participate in publication.

Consent for publication

All the authors consent to publish the manuscript.

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Almeida Rego, F.C., Savio, P.L.O., Pertile, S.F.N. et al. Viability of the use of mycotoxin adsorbent in the finishing of Texel lambs in confinement. Trop Anim Health Prod 53, 170 (2021). https://doi.org/10.1007/s11250-021-02619-0

Download citation

Keywords

  • Agricultural by-products
  • Carcass
  • Performance
  • Production costs
  • Weight gain