Skip to main content
Log in

Effect of the addition of Enterolobium cyclocarpum pods and Gliricidia sepium forage to Brachiaria brizantha on dry matter degradation, volatile fatty acid concentration, and in vitro methane production

  • Reviews
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine the in vitro fermentation and methane (CH4) production in the grass Brachiaria brizantha (B) alone or when mixed with Gliricidia sepium forage (G) and/or Enterolobium cyclocarpum pods (E). Theses substrates were incubated in the following proportions: B100 (B100%), B85E15 (B85% + E15%), B85G15 (B85% + G15%), B85GE15 (B85% + G7.5% + E7.5%), and B70GE30 (B70% + G15% + E15%). Dry matter degradation (DMD), volatile fatty acid (VFA) concentration, and CH4 production were measured at 12, 24, and 48 h of incubation. Experimental design was a randomized complete block. At 48-h incubation, DMD ranged between 46.5 and 51.2% (P = 0.0015). The lowest cumulative gas production (CGP) was observed in B85E15 and B85G15 (160 mL CGP/g organic matter, on average). At 48 h, B85G15 and B100 produced 28.8 and 30.2 mg CH4/g DMD, respectively, while B85E15 or the mixtures, 33.5 mg CH4/g DMD, on average (P ≤ 0.05). B85E15 and B70G30 had the highest concentration of total VFA (P ≤ 0.05). Results showed that B85E15 and B70GE30 favor DMD and increased total production of VFA and CH4 at 48 h. Supplementing livestock feed with legume forages and pods allows improves the nutritional quality of the diet and the fermentation patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alayon, J.A., Ramirez-Aviles, A., Ku-Vera, J.C., 1998. Intake, rumen digestion, digestibility and microbial nitrogen supply in sheep fed Cynodon nlemfuensis supplemented with Gliricidia sepium, Agroforestry Systems 41, 115--126.

    Google Scholar 

  • Albores-Moreno, S., Alayón-Gamboa, J.A., Ayala-Burgos, A.J., Solorio-Sánchez, J., Aguilar-Pérez, C.F., Olivera-Castillo, L., Ku-Vera, J.C., 2017. Effects of feeding ground pods of Enterolobium cyclocarpum Jacq. Griseb on dry matter intake, rumen fermentation, and enteric methane production by Pelibuey sheep fed tropical grass, Tropical Animal Health and Production, 49, 857--866.

  • Albores-Moreno, S., Alayón-Gamboa, J.A., Miranda-Romero, L.A., Alarcón-Zúñiga, B., Jiménez-Ferrer, G., Ku-Vera, J.C., Piñeiro-Vázquez, A.T., 2019. Effect of tree foliage supplementation of tropical grass diet on in vitro digestibility and fermentation, microbial biomass synthesis and enteric methane production in ruminants, Tropical Animal Health and Production, 51(4), 893—904.

    CAS  Google Scholar 

  • Anele, U.Y., Arigbede, O.M., Südekum, K.H., Oni, A.O., Jolaosho, A.O., Olanite, J.A., Adeosun, A.I., Dele P.A., Ike, K.A., Akinola, O.B., 2009. Seasonal chemical composition, in vitro fermentation and in sacco dry matter degradation of four indigenous multipurpose tree species in Nigeria, Animal Feed Science and Technology, 154, 47--57.

    CAS  Google Scholar 

  • Archimède, H., Rira, M., Barde, D.J., Labirin, F., Marie-Magdeleine, C., Calif, B., Periacarpin, F., Fleury, J., Rochette, Y., Morgavi, D.P., Doreau, M., 2015. Potential of tannin-rich plants, Leucaena leucocephala, Glyricidia sepium and Manihot esculenta to reduce enteric methane emissions in sheep, Journal of animal physiology and animal nutrition, 100 (6), 1149--1158. https://doi.org/10.1111/jpn.12423

    Article  CAS  Google Scholar 

  • Asaolu, V.O., Odeyinka, S.M., Binuomote, R.T., Odedire, J.A., Babayemi, O.J. 2014. Comparative nutritive evaluation of native Panicum maximum, selected tropical browses and their combinations using in vitro gas production technique, Agriculture and Biology Journal of North America, 5(5), 198--208.

    CAS  Google Scholar 

  • Association of Official Analytical Chemists (AOAC), 1990. Protein (Crude) Determination in Animal Feed: Copper Catalyst Kjeldahl Method. (984.13). In: Official Methods of Analysis. 15th ed. Gaithersburg, USA.

  • Association of Official Analytical Chemists (AOAC), 2005a. Determination of ash in animal feed. Official method 942.05. In: Official Methods of Analysis. 18th ed. Gaithersburg, USA.

  • Association of Official Analytical Chemists (AOAC), 2005b. Fiber (Acid Detergent) and Lignin in Animal Feed: Acid and Alkaline Titration Method 973.18. In: Official Methods of Analysis. 18th ed. Gaithersburg, USA.

  • Babayemi, O.J., 2006. Antinutritional factors, nutritive value and in vitro gas production of foliage and fruit of Enterolobium cyclocarpum, World Journal of Zoology, 1(2), 113--117.

    Google Scholar 

  • Babayemi, O.J., 2007. In vitro fermentation characteristics and acceptability by West African dwarf goats of some dry season forages, African Journal of Biotechnology, 6 (10), 1260--1265.

    Google Scholar 

  • Balogun, R.O., Jones, R., Holmes, J.H.G., 1998. Digestibility of some tropical browse species varying in tannin content, Animal Feed Science and Technology, 76 (1-2), 77--88.

    CAS  Google Scholar 

  • Barahona, R., Sánchez, M.S., Murgueitio, E., Chará J., 2014. Contribución de la Leucaena leucocephala Lam (de Wit) a la oferta y digestibilidad de nutrientes y las emisiones de metano entérico en bovinos pastoreando en sistemas silvopastoriles intensivos. En: Premio Nacional de Ganadería José Raimundo Sojo Zambrano, modalidad Investigación Científica. Revista Carta Fedegán- Colombia, 140, 66--69.

    Google Scholar 

  • Barrientos-Ramírez, L., Vagas-Radillo, J., Segura-Nieto, M., Manríquez-González, R., López-Dellamary, F., 2015. Nutritional evaluation of mature seeds of Enterolobium cyclocarpum (parota) from diverse ecological zones in western Mexico. Bosque (Valdivia). 36(1), 95–103. https://doi.org/10.4067/S0717. Acceded 15 Feb 2019.

    Article  Google Scholar 

  • Belete, S.G., and Abubeker, H., 2018. The Potential of Tropical Tannin Rich Browses in Reduction of Enteric Methane. Approaches in Poultry, Dairy & Veterinary Sciences, 2(3), 1--9.

    Google Scholar 

  • Bhatta, R., Tajima, K., Takusari, N., Higuchi, K., Enishi, O., Kurihara, M., 2007. Comparison of in vivo and in vitro techniques for methane production from ruminant diets, Asian-Australasian Journal of animal sciences, 20(7), 1049--1056.

    CAS  Google Scholar 

  • Calle, Z., Murgueito, E.R., 2011a a. El matarratón elemento de los paisajes tropicales: Proceso de producción de harina de matarratón a partir de bancos forrajeros. Revista Carta Fedegán- Colombia, 103, 94--106.

    Google Scholar 

  • Calle, Z., Murgueito, E.R., 2011b b. El orejero: sombrio, frutos, madera y fertilidad para los paisajes ganaderos. Revista Carta Fedegán- Colombia, 113, 48--56.

    Google Scholar 

  • Chará, J., Rivera, J., Barahona, R., Murgueitio, E., Deblitz, C., Reyes, E., Martins, R., Molina, J.J., Flores, M., Zuluaga, A., 2017. Intensive silvopastoral systems: economics and contribution to climate change mitigation and public policies. In: Montagnini, F., (eds), Integrating Landscapes: Agroforestry for Biodiversity Conservation and Food Sovereignty: Advances in Agroforestry, Springer, Cham, 2017, 395--416.

    Google Scholar 

  • Chaverri, C., Cicció, J.F., 2015. Leaf and flower essential oil compositions of Gliricidia sepium (Fabaceae) from Costa Rica, American Journal of Essential Oils and Natural Products, 2(3), 18--23.

    Google Scholar 

  • Clark, H., 2013. Nutritional and host effects on methanogenesis in the grazing ruminant, Animal, 7 (1), 41--48. https://doi.org/10.1017/S1751731112001875

    Article  CAS  Google Scholar 

  • Cuervo-Jiménez, A., Narváez-Solarte, W., Hahn, Von-Hessberg., 2017. Characteristics of Gliricidia sepium (jacq.) As fodder resource. Boletín Científico. Centro de Museos. Museo de Historia Natural, 17(1), 33--45.

    Google Scholar 

  • Danielsson, R., Ramin, M., Bertilsson, J., Lund, P., Huhtanen, P., 2017. Evaluation of a gas in vitro system for predicting methane production in vivo, Journal Dairy Science, 100(11), 8881--8894.

    CAS  Google Scholar 

  • Delgado, D.C., Galindo, J., González, R., Savón, L., Scull, I., González, N., Marrero, Y., 2010. Sustainable improve of animal production and health. In: Odongo, N.E., García, M. and Viljoen, G.J., (eds), Food and Agriculture Organization of the United Nations, Rome, 49--54.

    Google Scholar 

  • García, D.E., Medina, M.G., Cova, L.J., Torres, A., Soca, M., Pizzani, P., Baldizán, A., Domínguez, C.E., 2008. Preferencia de vacunos por el follaje de doce especies con potencial para sistemas agrosilvopastoriles en el Estado Trujillo, Venezuela, Pastos y Forrajes, 31(3), 255--270.

    Google Scholar 

  • Gaviria, X., Molina, I., Mazabel, J., Barahona, R., Arango, J., (in press). Relations between variables measured in experiments of in vitro gas production of tropical grasses and legumes.

  • Getachew, G., Robinson, P.H., De Peters, E.J., Taylor, S.J., 2004. Relationship between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds, Animal Feed Science and Technology, 111, 57--71.

    CAS  Google Scholar 

  • Hess, H.D., Kreuzer, M., Díaz, T.E., Lascano, C.E., Carulla, J.E., Soliva, C.R., Machmüller, A., 2003, Saponin rich tropical pods affect fermentation and methanogenesis in faunated and defaunated rumen fluid, Animal Feed Science and Technology, 109, 79--94.

    CAS  Google Scholar 

  • Hyams, D.G., 2013. CurveExpert Professional Documentation Release 2.0.0. 195.

  • Instituto Nacional de Estadística, Geografía e Informática, INEGI, 2017. Anuario estadístico y geográfico Yucatán. México. https://www.inegi.org.mx/. Accessed 18 Feb 2019.

  • International Organization for Standardization (ISO), 1998. Animal feeding stuffs: Animal products, and faeces or urine - ISO 9831: Determination of gross calorific value - Bomb calorimeter method. Geneva, Switzerland.

    Google Scholar 

  • International Organization for Standardization (ISO), 1999. Animal feeding stuffs - Determination of moisture and other volatile matter content. ISO 6496. Geneva, Switzerland.

  • International Organization for Standardization (ISO), 2008. Animal feeding stuffs: Determination of acid detergent fibre (ADF) and acid detergent lignin (ADL) contents. Geneva, Switzerland.

    Google Scholar 

  • Judd, L.M., and Kohn, R.A., 2018. Test of conditions that affect in vitro production of volatile fatty acids and gases, Journal Animal Science, 96, 694—704.

    CAS  Google Scholar 

  • Kaitho, R.J., Nsahlai, I.V., Williams, B.A., Umunna, N.N., Tamminga, S., Van Bruchem, J., 1998. Relationships between preference, rumen degradability, gas production and chemical composition of browses, Agroforestry Systems, 39, 129--144.

    Google Scholar 

  • Kennedy, P.M., Charmley, E., 2012. Methane yields from Brahman cattle fed tropical grasses and legumes, Animal Production Science, 52 (4), 225--239. https://doi.org/10.1071/AN11103.

    Article  CAS  Google Scholar 

  • Lavrenčič, A., Mills, C.R., Stefanon, B., 1998. Application of the Gompertz model to describe the fermentation characteristics of chemical components in forages, Journal Animal Science, 66, 155--161. https://doi.org/10.1017/S1357729800008924.

    Article  Google Scholar 

  • Lazos-Balbuena, F., Piñeiro-Vázquez, A.T., Valencia-Salazar, S., Ayala-Burgos, A.J., Solorio-Sánchez, F.J., Aguilar-Pérez, C.F., Molina, L., Castelán-Ortega, O.A., Ku-Vera, J.C., (in press). Effect of Enterolobium cyclocarpum pod meal supplementation on intake, digestibility and enteric methane emissions in heifers fed low-quality grass.

  • Lerner, A.M., Zuluaga, A.F., Chará, J., Etter, A., Searchinger, T., 2017. Sustainable cattle ranching in practice: Moving from theory to planning in Colombia's livestock sector, Journal of Environmental Management, 60 (2), 176--184.

    Google Scholar 

  • Macome, F.M., Pellikaan, W.F., Hendriks, W.H., Dijkstra, J., Hatew, B., Schonewille, J.T., Cone, J.W., 2017. In vitro gas and methane production of silages from whole-plant corn harvested at 4 different stages of maturity and a comparison with in vivo methane production, Journal Dairy Science, 100(11), 8895--8905.

    CAS  Google Scholar 

  • Makkar, H.P., 2003. Measurement of total phenolics and tannins using Folin-Ciocalteu method. In: Makkar, H., (eds), Quantification of tannins in tree and shrub foliage: A Laboratory Manual. Kluwer Academic Publishers. Dordrecht, 49--50.

    Google Scholar 

  • Makkar, H.P., Blümmel, M., Becker, K., 1995. In vitro effects and interactions of tannins and saponins and fate of tannins in rumen, Journal of the Science of Food and Agriculture, 69(4), 481--493.

    CAS  Google Scholar 

  • Martin, C., Morgavi, D.P., Doreau, M., 2010. Methane mitigation in ruminants: from microbe to the farm scale, Animal, 4, 351--365. https://doi.org/10.1017/S1751731109990620.

    Article  CAS  Google Scholar 

  • Meale, S.J., Chaves, A.V., Baah, J., McAllister, T.A., 2012. Methane production of different forages in in vitro ruminal fermentation, Asian-Australasian Journal of animal sciences, 25(1), 86.

    CAS  Google Scholar 

  • Molina, I.C., Cantet, J.M., Montoya, S., Correa, G., Barahona, R., 2013. Producción in vitro de metano de dos gramíneas tropicales solas y mezcladas con Leucaena leucocephala o Gliricidia sepium, Revista CES Medicina Veterinaria y Zootecnia, 8, 15--31.

    Google Scholar 

  • Molina, I.C., Arroyave, J., Valencia, S., Barahona, R., Aguilar, C., Ayala, A., Arango, J., Ku, J., 2019a. Effects of tannins and saponins contained in foliage of Gliricidia sepium and pods of Enterolobium cyclocarpum on fermentation, methane emissions and rumen microbial population in crossbred heifers, Animal Feed Science and Technology, 251, 1--11. https://doi.org/10.1016/j.anifeedsci.2019.01.011

    Article  CAS  Google Scholar 

  • Molina, I.C., Montoya, D., Zavala, L., Barahona, R., Arango, J., Ku, J., 2019b. Effects of long-term diet supplementation with Gliricidia sepium foliage mixed with Enterolobium cyclocarpum pods on enteric methane, apparent digestibility, and rumen microbial population in crossbred heifers. Journal Animal Science, 97, 1619--1633. https://doi.org/10.1093/jas/skz067

    Article  Google Scholar 

  • Molina, I.C., Mazabel, J., Gaviria, X., Barahona, R., Rao, I., Chirinda, N., Moorby, J., Arango, J., (submitted) (Sci. rep.: under review). Nutritional quality, fermentation and in vitro methane production from native and improved tropical grasses.

  • Monforte-Briceño, G.E., Sandoval-Castro, C.A., Ramírez, L., Capetillo, C.M., 2005. Defaunating capacity of tropical fodder trees: Effects of polyethylene glycol and its relationship to in vitro gas production, Animal Feed Science and Technology, 123–124, 313--327.

    Google Scholar 

  • Moscoso, C., Vélez, M., Flores, A., Agudelo, N., 1995. Effects of guanacaste tree (Enterolobium cyclocarpum Jacq. Griseb.) fruit as replacement for sorghum grain and cotton-seed meal in lamb diets, Small Ruminant Research, 18(2), 121--124.

    Google Scholar 

  • Moss, A.R., Jouany, J.P., Newbold, J.A., 2000. Methane production by ruminants: its contribution to global warming, Annales de Zootechnie, 49(3), 231--253.

    CAS  Google Scholar 

  • Mpairwe, D.R., Sabiiti, E.N., Mugerwa, J.S., 1998. Effect of dried Gliricidia sepium leaf supplement on feed intake, digestibility and nitrogen retention in sheep fed dried KW4 elephant grass (Pennisetum purpureum) ad libitum, Agroforestry Systems, 41, 139--150.

    Google Scholar 

  • Naranjo, J.F., Ceballos, O.A., Gaviria X., Tarazona, A.M., Correa, G.A., Chará, J.D., Murgueitio, E., Barahona, R., 2016. Estudio de la cinética fermentativa in vitro de mezclas de forrajes que incluyen Leucaena leucocephala proveniente de sistemas silvopastoriles intensivos (SSPi) en Colombia, Revista CES Medicina Veterinaria y Zootecnia, 11(2), 6--17.

    Google Scholar 

  • Narváez, N., Lascano, C.E., 2004. Caracterización química de especies arbóreas tropicales con potencial forrajero en Colombia, Pasturas Tropicales, 26, 1--8.

    Google Scholar 

  • Navarro-Villa, A., O’Brien, M., López, S., Boland, T.M., O’kiely, P., 2011. In vitro rumen methane output of red clover and perennial ryegrass assayed using the gas production technique (GPT), Animal Feed Science and Technology, 168(3-4), 152--164.

    CAS  Google Scholar 

  • Navas-Camacho, A., Laredo, M.A., Cuesta, A., Anzola, H., Leon, J.C., 1993. Effect of supplementation with a tree legume forage on rumen function, Livestock Research for Rural Development, 5(2).

  • Oleszek, W., 1990. Structural specificity of alfalfa (Medicago sativa) saponin haemolysis and its impact on 378 two haemolysis based quantification methods, Journal of the Science of Food and Agriculture, 53(4), 477--485.

    CAS  Google Scholar 

  • Ondiek, J.O., Abdulrazak, S.A., Tuitoek, J.K., Bareeba F.B., 1999. The effects of Gliricidia sepium and maize bran as supplementary feed to Rhodes grass hay on intake, digestión and liveweight of dairy goats, Livestock Production Science, 61, 65--70.

    Google Scholar 

  • Patra, A.K., Saxena, J., 2009. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production, Nutrition Research Reviews, 22(2), 204--219.

    CAS  Google Scholar 

  • Patra, A., Park, T., Kim, M., Yu, Z., 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Journal of animal science and biotechnology, 8(1), 13. https://doi.org/10.1186/s40104-017-0145-9.

    Article  CAS  Google Scholar 

  • Peters, M., Herrero, M., Fisher, M., Erb, K-H., Rao, I., Subbarao, G.V., Castro, A., Arango, J., Chara, J., Murgueitio, E., Vander Hoek, R., Laderach, P., Hyman, G., Tapasco, J., Strassburg, B., Paul, B.K., Rincon, A., Schultze-Kraft, R., Fonte, S., Searchinger, T., 2013. Challenges and opportunities for improving eco-efficiency of tropical forage-based systems to mitigate greenhouse gas emissions, Tropical Grasslands − Forrajes Tropicales, 1, 156--167.

    Google Scholar 

  • Piñeiro-Vázquez, A.T., Ayala-Burgos, A.J., Chay-Canul, A.J., Ku-Vera, J.C., 2013. Dry matter intake and digestibility of rations replacing concentrates with graded levels of Enterolobium cyclocarpum in Pelibuey lambs, Tropical Animal Health and Production, 45, 577-583.

    Google Scholar 

  • Pizzani, P., Matute, I., Martino, G., Arias, A., Godoy, S., Pereira, L., Rengifo, M., 2006. Composición fitoquímica y nutricional de algunos frutos de árboles de interés forrajero de los llanos centrales de Venezuela, Revista CES Medicina Veterinaria y Zootecnia, 47(2), 105--113.

    Google Scholar 

  • Porter, L., Hrstich, L., Chan, B., 1985. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin, Phytochemistry, 25, 223--230.

    Google Scholar 

  • Purcell, P.J., O’Brien, M., Boland, T.M., O’Donovan, M., O’Kiely, P., 2011. Impacts of herbage mass and sward allowance of perennial ryegrass sampled throughout the growing season on in vitro rumen methane production, Animal Feed Science and Technology, 166-167, 405--411.

    CAS  Google Scholar 

  • Rira, M., Morgavi, D.P., Archimède, H., Marie-Magdeleine, C., Popova, M., Bousseboua, H., Doreau, M., 2015. Potential of tannin-rich plants for modulating ruminal microbes and ruminal fermentation in sheep, Journal Animal Science, 93, 334--347.

    CAS  Google Scholar 

  • Rira, M., Morgavi, D.P., Genestoux, L., Djibiri, S., Sekhri, I., Doreau, M., 2019 Methanogenic potential of tropical feeds rich in hydrolysable tannins, Journal Animal Science, 97, 2700–2710

    Google Scholar 

  • Robinson, D.L., Goopy, J., Hegarty, R.S., 2010. Can rumen methane production be predicted from volatile fatty acid concentrations?, Animal Production Science, 50(6), 630--636.

    CAS  Google Scholar 

  • Saminathan, M., Sieo, C.C., Gan, H.M., Abdullah, N., Wong, C.M., Ho, Y.W., 2016. Effects of condensed tannin fractions of different molecular weights on population and diversity of bovine rumen methanogenic archaea in vitro, as determined by high-throughput sequencing, Animal Feed Science and Technology, 216, 146--160.

    CAS  Google Scholar 

  • SAS, 2012, Institute.User’s Guide: Statistics Version 9.4. SAS Inst. Inc., Cary.

    Google Scholar 

  • Seresinhe, T., Madushika, S.A.C., Seresinhe, Y., Lal, P.K., Orskov, E.R., 2012. Effects of tropical high tannin non legume and low tannin legume browse mixtures on fermentation parameters and methanogenesis using gas production technique, Asian-Australasian Journal of animal sciences, 25,1404--1410.

    CAS  Google Scholar 

  • Soliva, C.R., Zeleke, A.B., Clement, C., Hess, H.D., Fievez, V., Kreuzer, M., 2008. In vitro screening of various tropical foliages, seeds, pods and medicinal plants for low methane and high ammonia generating potentials in the rumen, Animal Feed Science and Technology, 147, 53--71.

    CAS  Google Scholar 

  • Theodorou, M.K., Williams, B.A., Dhanoa, M.S., McAllan, A.B., France, J.A., 1994. simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds, Animal Feed Science and Technology, 48 (3-4), 185--197.

    Google Scholar 

  • Torres-Salado, N., Sánchez-Santillán, P., Rojas-García, A.R., Herrera-Pérez, J., Hernández-Morales, J., 2018. Producción de gases efecto invernadero in vitro de leguminosas arbóreas del trópico seco mexicano, Archivos de Zootecnia, 67(257), 55--59.

    Google Scholar 

  • Tubiello, F.N., Salvatore, M., Rossi, S., Ferrara, A., Fitton, N., Smith, P., 2013. The FAOSTAT database of greenhouse gas emissions from agriculture, Environmental Research Letters, 8(1).

  • Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for dietary fiber neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition, Journal Dairy Science, 74 (10), 3583--3597.

    Google Scholar 

  • Westhoek, H., Rood, T., Van den Berg, M., Janse, J., Nijdam, D., Reudink, M., Stehfest, E., 2011. The protein puzzle: the consumption and production of meat, dairy and fish in the European Union, The Hague: PBL Netherlands Environmental Assessment Agency, 221. ISBN 9789078645610 – 218.

    Google Scholar 

Download references

Acknowledgments

The main author would like to thank CONACYT-Mexico for the scholarship granted to conduct Ph.D. studies at FMVZ-UADY, Mexico. This work was implemented as part of the CGIAR Research Programs (CRP) on Livestock and Climate Change, Agriculture & Food Security (CCAFS) CRP, which are carried out with support from CGIAR Fund Donors and through bilateral funding agreements. For details, please visit https://ccafs.cgiar.org/donors. We also acknowledge the financial assistance of BBSRC grants: RCUK-CIAT Newton Fund - Towards climate-smart forage-based diets for Colombian livestock (BB/R021856/1); Advancing sustainable forage-based livestock production systems in Colombia (CoForLife) (BB/S01893X/1) and GROW Colombia from the UK Research and Innovation (UKRI) Global Challenges Research Fund (GCRF) (BB/P028098/1). Our gratitude to Rancho Santa Cruz (Tizimín, México) for supplying G. sepium forage.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: I.M.B., R.B., J.K.V., J.A.; methodology: I.M.B., J.M.P., L.O.C., R.B. J.K.V.; formal analysis: I.M.B., J.M.P., J.A.C., L.O.C.; writing—original draft preparation: I. M.B.; writing—review and editing: I.M.B., J.L.U.B., L.O.C., R.B., N.C., J.K.V., J.A.; supervision: R.B., N.C., J.K.V., J.A.; project administration: J.A.; funding acquisition: N.C., J.K.V., J.A.

Corresponding author

Correspondence to Jacobo Arango.

Ethics declarations

The work described here was conducted using rumen fluid obtained from fistulated cattle maintained in accordance with the requirements of Colombian law No 84/1989 and following protocol approved by the Ethics Committee of the International Center for Tropical Agriculture, assuring the welfare of animals used in the experiment.

Conflict of interest

The authors declare that they have no conflict of interest..

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Fig. 2
figure 2

Nutritional quality (crude protein, neutral and acid detergent fiber, and anti-nutritional compounds), ruminal fermentation (degradability, gas production and total volatile fatty acids), methane production, weight gain and emissions intensity in vitro and in vivo Molina et al.(2019b), experiments

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina-Botero, I.C., Mazabel, J., Arceo-Castillo, J. et al. Effect of the addition of Enterolobium cyclocarpum pods and Gliricidia sepium forage to Brachiaria brizantha on dry matter degradation, volatile fatty acid concentration, and in vitro methane production. Trop Anim Health Prod 52, 2787–2798 (2020). https://doi.org/10.1007/s11250-020-02324-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-020-02324-4

Keywords

Navigation