Skip to main content
Log in

Indirect measures of methane emissions of Sahelian zebu cattle in West Africa, role of environment and management

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

In Northern Senegal, traditional cattle management systems (TRAD) which depend on natural forages coexist with intensified systems (INT) which rely on periodic supplementation with crop residues and local concentrates. This study aims to estimate the effects of seasons and management systems on the methane emissions of Gobra zebu, in relation to the diet’s chemical composition and feed intake. Six Gobra zebu cows per management system were individually monitored over 10 months, diet and faeces were sampled each season and their chemical composition and dry matter intake (DMI) were predicted by near infrared spectroscopy. Each diet was fermented in vitro to assess methane production and volatile fatty acid concentration. The DMI and digestible organic matter intake (DOMI) decreased (P < 0.0001) during the dry seasons for both systems in the same range, but INT improved the crude protein of the diets (P < 0.0001). Enteric methane production (mmol.g−1 dry matter) was lower for TRAD than INT, except during the rainy season when TRAD cows experienced a higher increase (P = 0.002). The methanogenic potential (methane production in vitro × DMI) varied with the seasons and the system with more accentuated variations for TRAD (P < 0.0001). Methanogenic potential shows true reflection of the effects of the seasons and management systems. The results highlight that enteric methane emissions varied with seasonal changes and that intensifying the diet induced no mitigating effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adriansen, H.K. 2006. Continuity and Change in Pastoral Livelihoods of Senegalese Fulani. Agriculture and Human Values. 23, 215–229.

    Article  Google Scholar 

  • Archimède, H., Bastianelli, D., Boval, M., Tran, G., and Sauvant, D. 2011. Ressources tropicales : disponibilité et valeur alimentaire. Inra Production Animale. 24, 23–40.

    Article  Google Scholar 

  • Assouma, M. H., Lecomte, P., Hiernaux, P., Ickowicz, A., Corniaux, C., Decruyenaere, V., Diarra, A.R. and Vayssières, J.. 2018. How to better account for livestock diversity and fodder seasonality in assessing the fodder intake of livestock grazing semi-arid sub-Saharan Africa rangelands. Livestock Science. 216,16–23.

    Article  Google Scholar 

  • Bah, A., Touré, I., Le Page, C., Ickowicz, A., and Diop, A.T. 2006. An agent-based model to understand the multiple uses of land and resources around drillings in Sahel. Mathematical and Computer Modelling. 44, 513–534.

    Article  Google Scholar 

  • Bodas, R., Prieto, N., Garcia-Gonzàlez, R., Andrès, S., Giràldes, F.J., and Lopez, S. 2012. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science Technology. 176, 78–93.

    Article  CAS  Google Scholar 

  • Boval, M., Coates, D.B., Lecomte, P., Decruyenaere, V. and Archimède. H. 2004. Faecal near infrared reflectance spectroscopy (NIRS) to assess chemical composition, in vivo digestibility and intake of tropical grass by Creole cattle. Animal Feed Science and Technology. 114, 19–29.

    Article  CAS  Google Scholar 

  • Breman, H., Diallo, A., Traoré, G., and Djiteye, M.M. 1978. The ecology of the Annual Migrations of Cattle in the Sahel. Proc. First Int. Rangeland Congress. 592–595.

  • Chapagain, B.P., and Wiesman, Z. 2007. Determination of Saponins in the Kernel Cake of Balanites aegyptiaca by HPLC-ESI/MS. Phytochemical Analysis. 18, 354–362.

    Article  CAS  Google Scholar 

  • Chirat, G., Groot, J.C.J., Messad, S., Bocquier, F., and Ickowicz, A. 2014. Instantaneous intake rate of free-grazing cattle as affected byherbage characteristics in heterogeneous tropicalagro-pastoral landscapes. Applied Animal Behaviour Science. 157, 48–60.

    Article  Google Scholar 

  • Coates, D. B. and Dixon, R.M. 2011. Developing Robust Faecal near Infrared Spectroscopy Calibrations to Predict Diet Dry Matter Digestibility in Cattle Consuming Tropical Forages. Journal of Near Infrared Spectroscopy. 19, 507–519.

    Article  CAS  Google Scholar 

  • Decruyenaere, V., Duldgen, A., and Stilman, D. 2009. Factors affecting intake by grazing ruminants and related quantification methods: a review. Biotechnologie Agronomie Société Environement. 13, 559–576.

    Google Scholar 

  • Decruyenaere, V., Froidmont, E., Bartiaux-Thill, N., Buldgen, A., and Stilmant, D. 2012. Faecal near-infrared reflectance spectroscopy (NIRS) compared with other techniques for estimating the in vivo digestibility and dry matter intake of lactating grazing dairy cows. Animal Feed Science Technology. 173, 220–234.

    Article  CAS  Google Scholar 

  • Doreau, M., Benhissi, H., Thior, Y.E., Bois, B., Leydet, C., Genestoux, L., Lecomte, P., Morgavi, D.P., and Ickowicz, A. 2016. Methanogenic potential of forages consumed throughout the year by cattle in a Sahelian pastoral area. Animal Production Science. 56, 613.

    Article  CAS  Google Scholar 

  • FAO. 2012. Système d’information sur le pastoralisme au Sahel: Atlas des évolutions des systèmes pastoraux au Sahel 1970-2012. (Rome: Food and Agriculture Organization of the United Nations).

  • Farid, H., Haslinger, E., Kunert, O., Wegner, C., and Hamburger, M. 2002. New Steroidal Glycosides from Balanites aegyptiaca. Helvetica Chimica Acta. 85, 1019–1026.

    Article  CAS  Google Scholar 

  • Gemeda, B.S., and Hassen, A. 2014. In vitro fermentation, digestibility and methane production of tropical perennial grass species. Crop Pasture Science. 65, 479–488.

    Article  CAS  Google Scholar 

  • Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., and Tempio, G. 2013. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities (Rome: Food and Agriculture Organization of the United Nations).

  • Grainger, C., and Beauchemin, K.A. 2011. Can enteric methane emissions from ruminants be lowered without lowering their production? Animal Feed Science and Technology. 166–167, 308–320.

    Article  Google Scholar 

  • Iorizzi, M., Lanzotti, V., Ranalli, G., De Marino, S., and Zollo, F. 2002. Antimicrobial Furostanol Saponins from the Seeds of Capsicum annuum L. Var. acuminatum. Journal of Agricultural and Food Chemistry. 50, 4310–4316.

    Article  CAS  Google Scholar 

  • Jayanegara, A., Leiber, F., and Kreuzer, M. 2012. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments: Meta-analysis on dietary tannins and ruminal methane. Journal of Animal Physiology and Animal Nutrition. 96, 365–375.

    Article  CAS  Google Scholar 

  • Kouazounde, J., Long, J., Tim, A.M., and Joachim, D.G. 2016. In vitro screening of selected essential oils from medicinal plants acclimated to Benin for their effects on methane production from rumen microbial fermentation. African Journal of. Biotechnology. 15, 442–450.

    Article  CAS  Google Scholar 

  • Martin, C., Rouel, J., Jouany, J.P., Doreau, M., and Chilliard, Y. 2008. Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil1. Journal of Animal Science. 86, 2642–2650.

    Article  CAS  Google Scholar 

  • Morgavi, D.P., Forano, E., Martin, C., and Newbold, C.J. 2010. Microbial ecosystem and methanogenesis in ruminants. Animal. 4, 1024–1036.

    Article  CAS  Google Scholar 

  • Morgavi, D.P., Kelly, W.J., Janssen, P.H., and Attwood, G.T. 2013. Rumen microbial (meta) genomics and its application to ruminant production. Animal. 7, 184–201.

    Article  CAS  Google Scholar 

  • Ndao, S., Moulin, C.-H., Traoré, E.H., Diop, M., and Bocquier, F. 2019. Contextualized re-calculation of enteric methane emission factors for small ruminants in sub-humid Western Africa is far lower than previous estimates. Tropical Animal Health Production. 51, 919–928.

    Article  Google Scholar 

  • Ramin, M., and Huhtanen, P. 2013. Development of equations for predicting methane emissions from ruminants. Journal of Dairy Science. 96, 2476–2493.

    Article  CAS  Google Scholar 

  • Rira, M., Morgavi, D.P., Archimède, H., Marie-Magdeleine, C., Popova, M., Bousseboua, H., and Doreau, M. 2015. Potential of tannin-rich plants for modulating ruminal microbes and ruminal fermentation in sheep1. Journal of Animal Science. 93, 334–347.

    Article  CAS  Google Scholar 

  • Schlecht, E., Blümmel, M., and Becker, K. 1999. The Influence of the Environment on Feed Intake of Cattle in Semi-Arid Africa. (CAB International).

  • Shenk, J., Westerhaus, M., and Berzaghi, P. 1997. Investigation of LOCAL calibration procedure for rear infrared instruments. Journal of Near Infrared Spectroscopy. 5, 223–232.

  • Tappan, G.G., Sall, M., Wood, E.C., and Cushing, M. 2004. Ecoregions and land cover trends in Senegal. Journal of Arid Environment. 59, 427–462.

    Article  Google Scholar 

  • Touré, O., and Arpaillange, J. 1986. Peul du Ferlo (L'Harmattan, PARIS).

    Google Scholar 

  • Tourrand, J.-F. 2000. L’élevage dans la révolution agricole au Waalo, delta du fleuve Sénégal (CIRAD, Paris).

    Google Scholar 

  • Tran, H., Salgado, P. and Lecomte, P. 2009. Species, climate and fertilizer effects on grass fibre and protein in tropical environments. Journal of Agricultural Science. 147, 555–568.

    Article  CAS  Google Scholar 

  • Vincke, C., Diédhiou, I., and Grouzis, M. 2010. Long term dynamics and structure of woody vegetation in the Ferlo (Senegal). Journal of Arid Environment. 74, 268–276.

    Article  Google Scholar 

  • Wallis de Vries, M.F. 1995. Estimating forage intake and quality in grazing cattle: a reconsideration of the hand-plucking method. Journal of Rangeland Management. 48, 370–375.

    Article  Google Scholar 

  • Yañez-Ruiz, D.R., Bannink, A., Djikstra, J., Kebreab, E., Morgavi, D.P., O’Kiely, P., Reynolds, C.K., Schwarm, A., Shingfield, K.J., Yu, Z., et al. 2016. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—a review. Animal Feed Science and Technology. 216, 1–18.

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank Denis Bastianelli, Laurent Bonnal from the CIRAD and Amadou Sow for their contribution to this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berenice Bois.

Ethics declarations

Management of experimental animals followed the guidelines for animal research of the French Ministry of Agriculture and guidelines for animal experimentation in the European Union (European Commission, 2010). Approval number for ethical evaluation APAFIS#8218–2016121517182412 v1.

Conflict of interests

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bois, B., Morgavi, D.P., González-García, E. et al. Indirect measures of methane emissions of Sahelian zebu cattle in West Africa, role of environment and management. Trop Anim Health Prod 52, 1953–1960 (2020). https://doi.org/10.1007/s11250-020-02212-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-020-02212-x

Keywords

Navigation