Skip to main content
Log in

Oxidative state in the estrus cycle of the buffaloes: a preliminary study

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

The oxidative status, the relationship between oxidizing agents (free radicals) and antioxidant system, is able to influence the correct performance of the estrus cycle. The aim of the experimentation was to define a first range of physiological values of reactive oxygen species (ROS) and the biological antioxidant potential (BAP), found during the phases of the buffalo estrus cycle. In this study, blood samples were taken from 30 buffaloes in various phases of the estrus cycle (estrus, diestrus, anestrus), on which serum determinations, by a photometer, of BAP and ROS have been carried out. The highest ROS values were detected during estrus and this is due to the primary role they play in determining ovulation. The highest levels of BAP have been found in diestrus, when they perform protective action against oxidative damage in the ovaries and uterus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, A., Gupta, S. and Sharma, RK, 2005. Role of oxidative stress in female reproduction, Reproductive Biology and Endocrinology, 3, 28.

    Article  Google Scholar 

  • Anderson, D. and Phillips, BJ, 1999. Comparative in vitro and in vivo effects of antioxidants, Food and Chemical Toxicology, 37, 1015–1025.

    Article  CAS  Google Scholar 

  • Anitha, A., Sarjan Rao, K., Suresh, J., Srinivasa Moorthy, P.R. and Kotilinga Reddy, Y., 2011. A body condition score (BCS) system in Murrah buffaloes, Buffalo Bulletin, 30, 79–99.

    Google Scholar 

  • Antolovich, M., Prenzler, PD, Patsalides, E., McDonald, S. and Robards, K., 2002. Methods for testing antioxidant activity, Analyst, 127, 183–198.

    Article  CAS  Google Scholar 

  • Bergendi, L., Benes, L., Durackova, Z. and Ferenčík, M., 1999.Chemistry, physiology and pathology of free radicals, Life Sciences, 65, 1865–1874.

    Article  CAS  Google Scholar 

  • Bertoni, G., Piccioli Cappelli, F. and Carli, D., 2001. The buffalo farm in Northern Italy, National Congress of the breeding buffalo: reports and scientific communications, Eboli (Sa), 20–27.

  • El-Shahata, K.H. Kandilb, M., 2012. Antioxidant capacity of follicular fluid in relation to follicular sizeand stage of estrous cycle in buffaloes, Theriogenology, 77, 1513–1518.

    Article  Google Scholar 

  • Fleury, C., Mignotte, B. and Vayssière, L., 2002. Mitochondrial reactive oxygen species in cell death signaling, Biochimie, 84, 131–141.

    Article  CAS  Google Scholar 

  • Fujii, J., Iuchi, Y. and Okada, F., 2005. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductivesystem, Reproductive Biology and Endocrinology, 3, 43–53.

    Article  Google Scholar 

  • Guerin, P., El Mouatassin, S. and Menezo, Y., 2001. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings, Human Reproduction Update, 7, 175–189.

    Article  CAS  Google Scholar 

  • Hallywell, B., 1991. Reactive oxygen species in living system, source, biochemistry, and role in human disease, The American Journal of Medicine, 91, 14–24.

    Article  Google Scholar 

  • Jones, L.A., Anthony, J.P., Henriquez, F.L., Lyons, R.E., Nickdel, M.B., Carter, K.C., Alexander, J. and Roberts, C.W., 2008. Toll-like receptor-4-mediated macrophage activation is differentially regulated by progesterone via the glucocorticoid and progesterone receptors. Immunology, 125, 59–69.

    Article  CAS  Google Scholar 

  • Jozwik, M., Wolczynski, S. and Szamatowicz, M., 1999. Oxidative stress markers in preovulatory follicular fluid in humans, Molecular Human Reproduction, 5, 409–413.

    Article  CAS  Google Scholar 

  • Kankofer, M., 2001. Antioxidative defense mechanisms against reactive oxygen species in bovine retained and not-retained placenta: activity of glutathione peroxidase, glutathione transferase, catalase and superoxide dismutase, Placenta 22, 466–472.

    Article  CAS  Google Scholar 

  • Kato, H., Sugino, N., Takiguchi, S., Kashida, S. and Nakamura, Y., 1997. Roles of reactive oxygen species in the regulation of luteal function, Reviews of Reproduction, 2, 81–83.

    Article  CAS  Google Scholar 

  • Kodaman, P.H. and Behrman, H.R., 2001. Endocrine-regulated and protein kinase c-dependent generation of superoxide by rat preovulatory follicles, Endocrinology, 142, 687–693.

    Article  CAS  Google Scholar 

  • Liebler, D.C., and Stratton, S.P., 1997. Determination of singlet oxygenspecific versus radical mediated lipid peroxidation in the photosensitized oxidation of lipidic bilayer: effect of beta-carotene and alphatocopherol. Biochemistry, 36, 12911–12920.

    Article  Google Scholar 

  • Liu, L., Trimarchi, J.R. and Keefe, D.L., 2000. Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes, Biology of Reproduction, 62, 1745–1753.

    Article  CAS  Google Scholar 

  • Miller, JK, Brzezinska-Slebodzinska, E. and Madsen, F.C., 1993. Oxidative stress, antioxidants, and animal function, Journal of Dairy Science, 76, 2812–2823.

    Article  CAS  Google Scholar 

  • Miyamoto, K., Sato, E.F., Kasahara, E., Jikumaru, M., Hiramoto, K., Tabata, H., Katsuragi, M., Odo, S., Utsumi, K. and Inoue, M., 2010 . Effect of oxidative stress during repeated ovulation on the structure and functions of the ovary, oocytes, and their mitochondria, Free Radical Biology and Medicine, 49, 674–681.

    Article  CAS  Google Scholar 

  • Miyazaki, T., Sueoka, K., Dharmarajan, A.M., Aclas, S.J., Bulkley, G.B. and Wallach, E.E., 1991. Effect of inhibition of oxygen free radical on ovulation and progesterone production by the in-vitro perfused rabbit ovary, Journal of Reproduction and Fertility, 91, 207–212.

    Article  CAS  Google Scholar 

  • Morgante, M., Beghelli D., Stelletta, C. and Ranucci, S., 2001. Glutathione peroxidase (GSHPx) and superoxide dismutase (SOD) erythrocytes in adult buffaloes (Bubalus Bubalis), National Congress of the breeding buffalo: reports and scientific communications, Eboli (Sa), 302–306.

  • Peltier, M., Siew Tee, and Smullan J., 2006. Does progesterone lower innate immunity to pathogens associated with preterm birth?, American Journal of Obstetrics and Gynecology, 195, S69.

    Google Scholar 

  • Poston, L. and Raijmakers, M.T.M., 2004. Trophoblast oxidative stress, antioxidants and pregnancy outcome - a review, Placenta 18, 72–78.

    Article  Google Scholar 

  • Pourová, J., Kottova, M., Voprsalova, M. and Pour, M., 2010. Reactive oxygen and nitrous species in normal physiological processes, Acta Physiologica, 198, 15–35.

    Article  Google Scholar 

  • Rahman, K., 2007. Studies on free radicals, antioxidants, and cofactors, Clinical Interventions in Aging, 2, 219–236.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzo, A., 2018. Oxidative status in oestrus cycle of buffaloes, (unpublished thesis, University of Bari Aldo Moro).

    Google Scholar 

  • Rizzo, A., Minoia, G., Trisolini, C., Manca, R. and Sciorsci, R.L., 2007.Concentrations of free radicals and beta-endorphins in repeat breeder cows, Animal Reproduction Science, 100, 257–263.

    Article  CAS  Google Scholar 

  • Rizzo, A., Mutinati, M., Spedicato, M., Minoia, G., Trisolini, C., Jirillo, F. and Sciorsci, R.L., 2008. First demonstration of an increased serum level of reactive oxygen species during the peripartal period in the ewes, Immunopharmacology and Immunotoxicology, 30, 741–746.

    Article  CAS  Google Scholar 

  • Rizzo, A., Minoia, G., Trisolini, C., Mutinati, M., Mailloux, M., Jirillo, F. and Sciorsci, R.L., 2009a. Reactive Oxygen Species (ROS); involvement in bovine follicular cysts etiopathogenesis, Immunopharmacology and Immunotoxicology, 31, 631–635.

    Article  CAS  Google Scholar 

  • Rizzo, A., Roscino, M.T., Minoia, G., Trisolini, C., Spedicato, M., Mutinati, M., Pantaleo, M., Jirillo, F. and Sciorsci, R.L., 2009b. Serum levels of reactive oxygen species (ROS) in the bitch. Immunopharmacology and Immunotoxicology, 31, 310–313.

    Article  CAS  Google Scholar 

  • Rizzo, A., Roscino, M.T., Binetti, F. and Sciorsci, R.L., 2012. Roles of reactive oxygen species in female reproduction, Reproduction in Domestic Animals, 47, 344–352.

    Article  CAS  Google Scholar 

  • Rizzo, A, Ceci E, Pantaleo M, Mutinati M, Spedicato M, Minoia G and Sciorsci, R.L., 2013. Evaluation of blood and milk oxidative status during early postpartum of dairy cows, Animal, 7, 118–123.

    Article  CAS  Google Scholar 

  • Sato, E.F., Kobuchi, H., Edashige, K., Takahashi, M., Yoshioka, T., Utsumi, K. and Inoue, M., 1992. Dynamic aspects of ovarian superoxide dismutase isozymes during the ovulatory process in the rat, FEBS Letters, 303, 121–125.

    Article  CAS  Google Scholar 

  • Saugstad, O.D., 2000. Bronchopulmonary dysplasia-oxidative stress and antioxidants. Seminars in Neonatology, 8, 39–49.

    Article  Google Scholar 

  • Shkolnik, K., Tadmor, A., Ben-Dor, S., Nevo, N., Galiani, D. and Dekel, N., 2011. Reactive oxygen species are indispensable in ovulation. Proceedings of the National Academy of Sciences, 108, 1462-1467.

    Article  CAS  Google Scholar 

  • Sugino, N., Takiguchi, S., Kashida, S., Karube, A., Nakamura, Y. and Kato, H., 2000. Superoxide dismutase expression in the human corpus luteum during the menstrual cycle and pregnancy inearly, Molecular Human Reproduction, 6, 19–25.

    Article  CAS  Google Scholar 

  • Tatemoto, H., Sakurai, N. and Mute, N., 2000. Protection of porcine oocytes against apoptotic cell death Caused by oxidative stress during in vitro maturation: role of cumulus cells, Biology of Reproduction, 63, 805–810.

    Article  CAS  Google Scholar 

  • Uttara, B., Singh, A.V., Zamboni, P., Mahajan, R.T., 2009. Oxidative stress and neurodegenerative 36 diseases: a review of upstream and downstream antioxidant therapeutic options, Current Neuropharmacology, 7, 65–74.

    Article  CAS  Google Scholar 

  • Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M. and Mazur, M., 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160, 1–40.

    Article  CAS  Google Scholar 

  • Verma, A.D., Panigrahi, M., Bhushan, B., Baba, N.A., Sulabh, S., Sadam, A., Parida, S., Sonwane, A. and Narayanan K., 2018. Relative expression of oxytocin receptor gene in buffalo endometrium in late luteal phase and pregnancy stages, Journal of Applied Animal Research, 46, 146–149.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Sciorsci.

Ethics declarations

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted (Ethics Committee for animal experimentation, No. prot. 27/18).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sciorsci, R.L., Galgano, M., Mutinati, M. et al. Oxidative state in the estrus cycle of the buffaloes: a preliminary study. Trop Anim Health Prod 52, 1331–1334 (2020). https://doi.org/10.1007/s11250-019-02133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-019-02133-4

Keywords

Navigation