Skip to main content
Log in

Whey protein polymorphisms in Sudanese goat breeds

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

The aim of the present study was to assess genetic variation that is characteristic for Sudanese goat breeds in the milk whey protein genes (LALBA and BLG). Four Sudanese goat breeds were screened for variability in LALBA and BLG genes at the DNA level by comparative sequencing of five animals per breed. Sixteen SNPs were identified in LALBA: seven in the upstream region, six synonymous, and three in the 3´-UTR. Three novel synonymous SNPs in exon 2 (ss5197800003, ss5197800012, and ss5197800004) were found in Nubian, Desert, and Nilotic, but not in Taggar goats. One SNP in the promoter of LALBA (rs642745519) modifies a predicted transcription factor binding site for Tcfe2a. The SNPs in the 3'-UTR (rs657915405, rs641559728, and rs664225585) affect predicted miRNA target sites. With respect to haplotypes in the exonic region, haplotype LALBA-A is most frequent in Nubian, Desert, and Nilotic goats, while haplotype LALBA-D is prevalent in Taggar goats. In BLG, 30 SNPs were detected: eight in the upstream gene region, two synonymous, 17 intronic, and three in the 3'-UTR. Among the 30 identified SNPs, 15 were novel. Four of these novel SNPs were located in the upstream gene region, one was synonymous, and ten were intronic. The novel synonymous SNP (ss5197800017), located in exon 2, was only found in Nubian and Nilotic goats. The SNPs ss5197800010 and rs635615192 in the promoter are located in predicted binding sites of transcription factors (M6097, Elk3, Elf5, and GABPA). Among seven haplotypes detected in the coding region, haplotype BLG-A is most frequent in Nubian and Nilotic goats while haplotype BLG-B is most frequent in Desert and Taggar goats. The high variability in regulatory gene regions among Sudanese goats could potentially affect the quality and yield of whey proteins in goat milk and provide a wide resource for genetic improvement of milk production and milk technology characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acton, Q.A., 2013. Dietary Proteins-Advances in Research and Application, (ScholarlyBrief, Atlanta, Georgia)

    Google Scholar 

  • Ağaoğlu, Ö.K., Saatci, M., Elmaz, O., Çolak, M., Kocamüftüoğlu, M., and Zeytünlü, E., 2014. Mva I PCR-RFLP identifies single nucleotide polymorphism of the alpha-lactalbumin gene in some goat breeds reared in Turkey, Turkish Journal of Veterinary and Animal Sciences, 38, 225-229

    Google Scholar 

  • Agudelo, D., Nafisi, S., and Tajmir-Riahi, H.-A., 2013. Encapsulation of milk β-lactoglobulin by chitosan nanoparticles, The Journal of Physical Chemistry B, 117, 6403-6409

    CAS  PubMed  Google Scholar 

  • Ariyarathne, H.B.P.C., Ariyaratne, H.B.S., and Lokugalappatti, L.G.S., 2017. Single nucleotide polymorphism of candidate genes in non-descript local goats of Sri Lanka, Livestock Science, 196, 49-54

    Google Scholar 

  • Aschaffenburg, R., and Drewry, J., 1955. Occurrence of different beta-lactoglobulins in cow's milk, Nature, 176, 218-219

    CAS  PubMed  Google Scholar 

  • Ballester, M., Sánchez, A., and Folch, J.M., 2005. Polymorphisms in the goat β-lactoglobulin gene, Journal of Dairy Research, 72, 379-384

    CAS  Google Scholar 

  • Barbiroli, A., Rasmussen, P., Beringhelli, T., Scanu, S., Ferranti, P., and Lametti, S., 2008. Investigating the drug stabilizing ability of Beta-lactoglobulin. 53rd National meeting of Italian society of biochemistry and molecular biology and National meeting of chemistry of biological systems, 2008, (Frienze University press, Italy), 15.17

  • Betel, D., Wilson, M., Gabow, A., Marks, D.S., and Sander, C., 2008. The microRNA.org resource: targets and expression, Nucleic Acids Res, 36, D149-153

    CAS  PubMed  Google Scholar 

  • Bevilacqua, C., Ferranti, P., Garro, G., Veltri, C., Lagonigro, R., Leroux, C., Pietrola, E., Addeo, F., Pilla, F., Chianese, L., and Martin, P., 2002. Interallelic recombination is probably responsible for the occurrence of a new alpha(s1)-casein variant found in the goat species, Eur J Biochem, 269, 1293-1303

    CAS  PubMed  Google Scholar 

  • Bickhart, D.M., Rosen, B.D., Koren, S., Sayre, B.L., Hastie, A.R., Chan, S., Lee, J., Lam, E.T., Liachko, I., Sullivan, S.T., Burton, J.N., Huson, H.J., Nystrom, J.C., Kelley, C.M., Hutchison, J.L., Zhou, Y., Sun, J., Crisa, A., Ponce de Leon, F.A., Schwartz, J.C., Hammond, J.A., Waldbieser, G.C., Schroeder, S.G., Liu, G.E., Dunham, M.J., Shendure, J., Sonstegard, T.S., Phillippy, A.M., Van Tassell, C.P., and Smith, T.P., 2017. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome, Nat Genet, 49, 643-650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bleck, G.T., and Bremel, R.D., 1993. Correlation of the alpha-lactalbumin (+15) polymorphism to milk production and milk composition of Holsteins, J Dairy Sci, 76, 2292-2298

    CAS  PubMed  Google Scholar 

  • Braunschweig, M.H., and Leeb, T., 2006. Aberrant low expression level of bovine beta-lactoglobulin is associated with a C to A transversion in the BLG promoter region, J Dairy Sci, 89, 4414-4419

    CAS  PubMed  Google Scholar 

  • Brew, K., 2011. Milk Proteins | α-Lactalbumin. In: John W. Fuquay, Paul L. H. McSweeney and P.F. Fox (eds), Encyclopedia of Dairy Sciences, 2 edition, Academic Press, Oxford, 780-786

    Google Scholar 

  • Bushara, I., and Abu Nikhaila, M.M.A.A., 2012. Productivity Performance of Taggar Female Kids under Grazing Condition, J. Anim. Prod. Adv., 2, 74-79

    Google Scholar 

  • Cannas, A., and Francescon, G.P.A.H.D., 2008. Dairy Goats Feeding and Nutrition, (CAB, UK)

    Google Scholar 

  • Caroli, A.M., Chessa, S., and Erhardt, G.J., 2009. Invited review: milk protein polymorphisms in cattle: effect on animal breeding and human nutrition, J Dairy Sci, 92, 5335-5352

    CAS  PubMed  Google Scholar 

  • Chaneton, L., Perez Saez, J.M., and Bussmann, L.E., 2011. Antimicrobial activity of bovine beta-lactoglobulin against mastitis-causing bacteria, J Dairy Sci, 94, 138-145

    CAS  PubMed  Google Scholar 

  • Chianese, L., Portolano B, Troncone E, Pizzolongo F, Ferranti P, Addeo F, Alicata ML, Pilla F, and Calagna, G., 2000. The quality of Girgentana goat milk. Proceedings of the Proc VII Int Conf Goats, Tours, France, 2000, 946–949

  • Cosenza, G., Gallo, D., Illario, R., di Gregorio, P., Senese, C., Ferrara, L., and Ramunno, L., 2003. A Mval PCR-RFLP detecting a silent allele at the goat alpha-lactalbumin locus, J Dairy Res, 70, 355-357

    CAS  PubMed  Google Scholar 

  • Cui, Y., Cao, Y., Ma, Y., Qu, X., and Dong, A., 2012. Genetic variation in the Beta-lactoglobulin of Chinese yak (Bos grunniens), J Genet, 91, e44-48

    PubMed  Google Scholar 

  • Dettori, M.L., Pazzola, M., Paschino, P., Pira, M.G., and Vacca, G.M., 2015a. Variability of the caprine whey protein genes and their association with milk yield, composition and renneting properties in the Sarda breed. 1. The LALBA gene J Dairy Res, 82, 434-441

    CAS  PubMed  Google Scholar 

  • Dettori, M.L., Pazzola, M., Pira, E., Puggioni, O., and Vacca, G.M., 2015b. Variability of the caprine whey protein genes and their association with milk yield, composition and renneting properties in the Sarda breed: 2. The BLG gene. J Dairy Res, 82, 442-448

    CAS  PubMed  Google Scholar 

  • El-Hanafy, A.A.-E.M., Qureshi, M.I., Sabir, J.S.M., Mutwakil, M., Ramadan, H.A.-M.I., El-Ashmaoui, H., Abou-Alsoud, M., and Ahmed, M.M.M., 2016. Allele mining in the caprine alpha-lactalbumin (LALBA) gene of native Saudi origin, Biotechnology & Biotechnological Equipment, 30, 1115-1121

    CAS  Google Scholar 

  • El-Hanafy, A.A., El-Saadani, M.A., Eissa, M., Maharem, G.M., and Khalifa, Z.A., 2010. Polymorphism of β-lactoglobulin gene in Barki and Damascus and their cross bred goats in relation to milk yield, Biotechnology in Animal Husbandry, 26, 1-12

    Google Scholar 

  • FAO, 2011. Molecular Genetic Characterization of Animal Genetic Resources, (Rome, Italy)

  • Flower, D.R., 1996. The lipocalin protein family: structure and function, Biochem J, 318 ( Pt 1), 1-14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fox, P.F., McSweeney, P.L.H., Cogan, T.M., and Guinee, T.P., 2000. Fundamentals of Cheese Science, (Springer Science & Business Media, 2000, Gaithersburg, Maryland)

  • Graziano, M., D’Andrea, M., Angiolillo, A., Lagonigro, R., and Pilla, F., 2003. A new polymorphism in goat β -lactoglobulin promoter region, Italian Journal of Animal Science, 1, 65–68

    Google Scholar 

  • Hanafy, A.A.M.E., Qureshi, M.I., Sabir, J., Mutawakil, M., Ahmed, M.M.M., Ashmaoui, H.E., Ramadan, H.A.M.I., Abou-Alsoud, M., and Sadek, M.A., 2015. Nucleotide sequencing and DNA polymorphism studies of Beta-lactoglobulin gene in native Saudi goat breeds in relation to milk yield. zech J Anim. Sci., 60, 132-138

    Google Scholar 

  • Hayes, H.C., and Petit, E.J., 1993. Mapping of the beta-lactoglobulin gene and of an immunoglobulin M heavy chain-like sequence to homoeologous cattle, sheep, and goat chromosomes, Mamm Genome, 4, 207-210

    CAS  PubMed  Google Scholar 

  • Ismail, A.M., Yousif, I.A., and Fadlelmoula, A.A., 2011. Phenotypic variations in birth and body weights of the Sudanese Desert goats., Livestock Research for Rural Development., 23

  • Kontopidis, G., Holt, C., and Sawyer, L., 2004. Invited review: beta-lactoglobulin: binding properties, structure, and function, J Dairy Sci, 87, 785-796

    CAS  PubMed  Google Scholar 

  • Korhonen, H.J., 2011. Bioactive milk proteins, peptides and lipids and other functional components derived from milk and bovine colostrum. In: M. Saarela (ed), Functional Foods: Concept to Product, 2011, (Elsevier, 2011, Cambridge, UK), 672 pages

  • Kumar, A., Rout, P.K., and Roy, R., 2006. Polymorphism of β-lacto globulin gene in Indian goats and its effect on milk yield, Journal of Applied Genetics, 47, 49-53

    PubMed  Google Scholar 

  • Kumar, P., Rout, P.K., Shukla, R.N., Mandal, A., and Roy, R., 2002. Genetics of milk protein variants in different Indian goats. Proceedings of the 10th Int. Cong. Asian-Aust. Assoc. Anim. Prod. Soc. (AAAP), India, 2002, pp.168

  • Lan, X.Y., Chen, H., Tian, Z.Q., Liu, S.Q., Zhang, Y.B., Wang, X., and Fang, X.T., 2008. Correlations between SNP of LALBA gene and economic traits in Inner Mongolian white cashmere goat, Yi Chuan, 30, 169-174

    CAS  PubMed  Google Scholar 

  • Lan, X.Y., Pan, C.Y., Chen, H., Zhang, C.L., Zhang, A.L., Zhang, L., Li, J.Y., and Lei, C.Z., 2007. An Msp I PCR-RFLP detecting a single nucleotide polymorphism at alpha-lactalbumin gene in goat Czech J. Anim. Sci., 52, 138–142

    CAS  Google Scholar 

  • Layman, D.K., Lonnerdal, B., and Fernstrom, J.D., 2018. Applications for alpha-lactalbumin in human nutrition, Nutr Rev, 76, 444-460

    PubMed  PubMed Central  Google Scholar 

  • Lozinsky, E., Iametti, S., Barbiroli, A., Likhtenshtein, G.I., Kálai, T., Hideg, K., and Bonomi, F., 2006. Structural features of transiently modified beta-lactoglobulin relevant to the stable binding of large hydrophobic molecules, The Protein Journal, 25, 1-15

    CAS  PubMed  Google Scholar 

  • Macha, J., 1970. Protein Polymorphism in goats’ milk., Zivocisna ́Vy ́roba, 15, 801–805

  • Mahmood, A., and Usman, S., 2010. A Comparative study on the physicochemical parameters of milk samples collected from buffalo, cow, goat and sheep of Gujrat, Pakistan, Pakistan Journal of Nutrition, 9, 1192-1197

    CAS  Google Scholar 

  • Marshall, K., 2004. Therapeutic applications of whey protein, Altern Med Rev, 9, 136-156

    PubMed  Google Scholar 

  • Moioli, B., Pilla, F., and Tripaldi, C., 1998. Detection of milk protein genetic polymorphisms in order to improve dairy traits in sheep and goats: a review, Small Ruminant Research, 27, 185-195

    Google Scholar 

  • Ng-Kwai-Hang, K.F., and Grosclaude, F., 1992. Genetic Polymorphism of Milk Proteins. In: P.F. Fox and P.L.H. McSweeney (eds), Advanced Dairy Chemistry—1 Proteins, 1992, (Springer, Boston), 739-816

    Google Scholar 

  • O'Mahony, J.A., and Fox, P.F., 2014. Milk: An Overview In: M. Boland, H. Singh and A. Thompson (eds), Milk Proteins: From Expression to Food. (Academic Press London ),

    Google Scholar 

  • Oftedal, O.T., 2012. The evolution of milk secretion and its ancient origins, Animal, 6, 355-368

    CAS  PubMed  Google Scholar 

  • Osman, M., Nadia, J., Ghada, H., and Rahman, A., 2008. Susceptibility of Sudanese Nubian goats, Nilotic dwarf goats and Garag ewes to experimental infection with a mechanically transmitted Trypanosoma vivax stock. , Pak J Biol Sci., 11, 472–475

    PubMed  Google Scholar 

  • Ouwehand, A.C., Salminen, S.J., Skurnik, M., and Conway, P.L., 1997. Inhibition of pathogen adhesion by β-lactoglobulin, International Dairy Journal, 7, 685-692

    CAS  Google Scholar 

  • Ozdemir, M., Kopuzlu, S., Topal, M., and Bilgin, O.C., 2018. Relationships between milk protein polymorphisms and production traits in cattle: a systematic review and meta-analysis, Arch. Anim. Breed, 61, 197-206

    Google Scholar 

  • Pena, R.N., Sanchez, A., and Folch, J.M., 2000. Characterization of genetic polymorphism in the goat beta-lactoglobulin gene, J Dairy Res, 67, 217-224

    CAS  PubMed  Google Scholar 

  • Perez, M.D., Sanchez, L., Aranda, P., Ena, J.M., Oria, R., and Calvo, M., 1992. Effect of beta-lactoglobulin on the activity of pregastric lipase. A possible role for this protein in ruminant milk. Biochim Biophys Acta, 1123, 151-155

    CAS  PubMed  Google Scholar 

  • Permyakov, E.A., and Berliner, L.J., 2000. alpha-Lactalbumin: structure and function, FEBS Lett, 473, 269-274

    CAS  PubMed  Google Scholar 

  • Rahmatalla, S.A., Arends, D., Reissmann, M., Ahmed, A.S., Wimmers, K., Reyer, H., and Brockmann, G.A., 2017. Whole genome population genetics analysis of Sudanese goats identifies regions harboring genes associated with major traits, BMC Genetics, 18, 92

    PubMed  PubMed Central  Google Scholar 

  • Sardina, M.T., Rosa, A.J.M., Davoli, R., Braglia, S., and Portolano, B.J.M.B.R., 2012. Polymorphisms of beta-lactoglobulin promoter region in three Sicilian goat breeds, 39, 3203-3210

  • Shannon, P., and Richards, M., 2017. MotifDb: An annotated collection of protein-DNA binding sequence motifs. R package version 1.20.0, 2017,

  • Steele, M., 1996. The Tropical Agriculturalist: Goats, (Macmillan Press Ltd., Basingstoke, UK)

    Google Scholar 

  • Sun, D.-W., 2012. Thermal Food Processing: New Technologies and Quality Issues, Second Edition, (France)

    Google Scholar 

  • Tetens, J.L., Qanbari, S., Drogemuller, C., Pimentel, E.C., Bennewitz, J., Thaller, G., and Tetens, J., 2014. Bos indicus introgression into (peri-)alpine cattle breeds - evidence from the analysis of bovine whey protein variants, Anim Genet, 45, 585-588

    CAS  PubMed  Google Scholar 

  • Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., and Rozen, S.G., 2012. Primer3--new capabilities and interfaces, Nucleic Acids Res, 40, e115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ushida, Y., Shimokawa, Y., Toida, T., Matsui, H., and Takase, M., 2007. Bovine alpha-lactalbumin stimulates mucus metabolism in gastric mucosa, J Dairy Sci, 90, 541-546

    CAS  PubMed  Google Scholar 

  • Vargas-Bello-Perez, E., Marquez-Hernandez, R.I., and Hernandez-Castellano, L.E., 2019. Bioactive peptides from milk: animal determinants and their implications in human health, J Dairy Res, 86, 136-144

    CAS  PubMed  Google Scholar 

  • Vilotte, J.L., 2002. Lowering the milk lactose content in vivo: potential interests, strategies and physiological consequences, Reprod Nutr Dev, 42, 127-132

    PubMed  Google Scholar 

  • Walzem, R.L., Dillard, C.J., and German, J.B., 2002. Whey components: millennia of evolution create functionalities for mammalian nutrition: what we know and what we may be overlooking, Crit Rev Food Sci Nutr, 42, 353-375

    CAS  PubMed  Google Scholar 

  • Wilson, T., 1991. Small ruminant production and the small ruminant genetic resource in tropical Africa, FAO Animal Production and Health Paper, 88

  • Yahyaoui, M.H., Pena, R.N., Sánchez, A., and Folch, J.M., 2000. Rapid communication: polymorphism in the goat β-lactoglobulin proximal promoter region1, Journal of Animal Science, 78, 1100-1101

    CAS  PubMed  Google Scholar 

  • Yang, F., Li, L., Liu, H., Cai, Y., and Wang, G., 2012. Polymorphism in the exon 4 of beta-lactoglobulin variant B precursor gene and its association with milk traits and protein structure in Chinese Holstein, Mol Biol Rep, 39, 3957-3964

    CAS  PubMed  Google Scholar 

  • Zidi, A., Casas, E., Amills, M., Jordana, J., Carrizosa, J., Urrutia, B., and Serradilla, J.M., 2014. Genetic variation at the caprine lactalbumin, alpha (LALBA) gene and its association with milk lactose concentration, Anim Genet, 45, 612-613

    CAS  PubMed  Google Scholar 

  • Zimet, P., and Livney, Y.D., 2009. Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids, Food Hydrocolloids, 23, 1120-1126

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the goat owners in Sudan, the management staff of the Goat Research Stations Wad Medani, Kuku and Dongola, as well as the farms of Bahri and the Sudan University for providing goat samples.

Funding

SR and this study were funded by Georg Foster Research Fellowship provided by Alexander von Humboldt Foundation, Germany.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siham A. Rahmatalla or Gudrun A. Brockmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All samples were collected with permission from the owners of the different animals.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Additional file 1

(DOC 39 kb)

Additional file 2

Sequence logos of the transcription factor binding sites (JPG 345 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmatalla, S.A., Arends, D., Ahmed, A.S. et al. Whey protein polymorphisms in Sudanese goat breeds. Trop Anim Health Prod 52, 1211–1222 (2020). https://doi.org/10.1007/s11250-019-02119-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-019-02119-2

Keywords

Navigation