Productive performance and reproductive characteristics of Morada Nova male lambs fed with high-energy diet

  • Andréa do Nascimento Barreto
  • André Guimarães Maciel e Silva
  • Sergio Novita Esteves
  • Manuel Antonio Chagas Jacinto
  • Waldomiro Barioni Junior
  • Felipe Zandonadi Brandão
  • Messy Hannear de Andrade Pantoja
  • Daniela Botta
  • Narian Romanello
  • Amanda Prudêncio Lemes
  • Alessandro Giro
  • Alexandre Rossetto GarciaEmail author
Regular Articles


Morada Nova breed sheep are without wool, tropicalized, small-sized animals, known for their high-quality meat and skin. Their body development naturally depends on the genetic potential and adequate nutritional support, which suggests that the offer of high-energy density diets positively influences their productive indicators. Thus, the present study investigated the effect of a high-energy diet for the Morada Nova lambs on body development and testicular function, considering their histomorphometric characteristics and seminal quality. Forty-two males (19.2 weeks, 20.7 ± 3.5 kg) were equally divided into two groups and fed with 2.05 Mcal (G7, n = 21) or 2.37 Mcal (G24, n = 21) of metabolizable energy/day, equivalent to 7% and 24% above the minimum for growing lambs. The animals were confined for 23 weeks (W0 to W23). Weight and body score differed significantly from the W1 (P < 0.05). From the W5, thoracic perimeter, body length, wither height, and rump attributes were higher in G24 (P < 0.05). The scrotal circumference and testicular volume were higher in G24 from the W3 (P < 0.05). Although testosterone levels were not affected (P = 0.05), the highest energy intake increased the diameter of the seminiferous tubules and the development of the epididymal epithelium (P < 0.05). This positively influenced the seminal quality and reduced the minor defects (21.87% vs. 17.13%) and the total spermatic defects (26.34% vs. 21.78%, P < 0.05). Thus, it is possible to employ higher levels of dietary energy for Morada Nova young males to express higher productive efficiency and earlier reproductive attributes of interest.


Ovis aries Hair sheep Performance Morphometry Sperm 



This project was supported by Embrapa-Brazilian Agricultural Research Corporation (BIOTEC Network Grant No. 01130600105), Federal University of Pará (UFPA/PROPESP), CAPES (Pró-Amazônia Biodiversity and Sustainability Program), and CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant No. 831591/1999-4). The authors also thank Dr. Júlio Balieiro and Dr. Sarita Gallo for the critical review of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest. All co-authors participated in the execution of the research, in the writing of this article, and they agree with this final version.


  1. Akaike, H., 1974. A New Look at the Statistical Model Identification. IEEE Transaction on Automatic Control, 19, 716–723.CrossRefGoogle Scholar
  2. Alkassf, J.E., Bryant, M.J., Waltonj, J.S., 1982. Some effects of level of feeding and body condition upon sperm production and gonadotropin concentrations in the ram. Animal Production, 34, 265–277.Google Scholar
  3. Arandas, J.K.G., Alves, A.G.C., Facó, O., Belchior, E.B., Shiodsuki, L., Leite, P.M.B.A., Ribero, M.N., 2017. Do traditional sheep breeders perform conscious selection? An example from a participatory breeding program of Morada Nova sheep. Tropical Animal Health and Production, 49, 1479–1487.CrossRefGoogle Scholar
  4. Araújo Filho, J.T., Costa, R.G., Fraga, A.B., Sousa, W.H., Gonzaga Neto, W., Batista, A.S.M., Cunha, M.G.G., 2007. Effect of the diet and genotype on body measurements and non-constituents of carcass of woolless lambs finished in a feedlot. Revista Brasileira de Saúde e Produção Anima,l 4, 394–404.Google Scholar
  5. Araújo, T.L.A.C., Pereira, E.S., Mizubuti, I.Y., Campos, A.C.N., Pereira, M.W.F., Heinzen, E.L., Magalhães, H.C.R., Bezerra, L.R., Silva, L.P., Oliveira, R.L., 2017. Effects of quantitative feed restriction and sex on carcass traits, meat quality and meat lipid profile of Morada Nova lambs. Journal of Animal Science and Biotechnology, 8, 46–58.CrossRefGoogle Scholar
  6. Bailey, T.L., Hudson, R.S., Powe, T.A., 1998. Caliper and ultrasonographic measurements of bovine testicles and a mathematical formula for determining testicular volume and weight in vivo. Theriogenology, 49, 581–594.CrossRefGoogle Scholar
  7. Banskalieva, V., Marinova, P., Monin, G., Popova, T., Ignatova, M., 2005. Manipulating of the carcass and meat quality in lamb meat producing for the European Market II. Fatty acid composition of fat depots of lambs grown under two different production systems, Bulgarian. Journal of Agricultural Science, 11, 603–610.Google Scholar
  8. Bhatt, R.S., Soren, N.M., Sahoo, A., Karim, S.A., 2013. Level and period of realimentation to assess improvement in body condition and carcass quality in cull ewes. Tropical Animal Health and Production, 45, 167–176.CrossRefGoogle Scholar
  9. Blom, E., 1973. The ultrastructure of some characteristic sperm defects and a proposal for a new classification of the bull spermiogram. Nordisk Veterinaermedicin, 25, 383–391.Google Scholar
  10. Blom, E., 1983. Sperm morphology with reference to bull infertility Ludhiana, First All-India Symposium on Animal Reproduction, 61–81.Google Scholar
  11. Brito, L.F., Barth, A.D., Wilde, R.E., Kastelic, J.P., 2012. Effect of growth rate from 6 to 16 months of age on sexual development and reproductive function in beef bulls. Theriogenology, 15, 1398–405.CrossRefGoogle Scholar
  12. Cam, M.A., Olfaz, M., Soydan, E., 2010. Possibilities of using morphometrics characteristics as a tool for body weight prediction in Turkish hair goats (Kilkeci). Asian Journal of Animal and Veterinary Advances, 5, 52–59.CrossRefGoogle Scholar
  13. CBRA, 2013. “Colégio Brasileiro de Reprodução Animal: Manual for andrological examination and assessment of animal semen”, 3rd ed. Belo Horizonte, Brasil, 104. Portuguese.Google Scholar
  14. Cezar, M.F., Sousa, W.H., 2007. Ovine and caprine carcasses: Obtaining, evaluating and classifying, Uberaba, MG: Ed. Agropecuária Tropical, pp. 231.Google Scholar
  15. Clementino, R.H., Sousa, W.H., Medeiros, A.N., 2007. Effect of concentrate levels on retail cuts, non-carcass and leg components of crossbred feedlot lambs. Revista Brasileira de Zootecnia, 36, 681–688.CrossRefGoogle Scholar
  16. Cornwall, G.A., 2009. New insights into epididymal biology and function. Human Reproduction Update, 15, 213–227.CrossRefGoogle Scholar
  17. Costa, M.R.G.F., Pereira, E.S., Silva, A.M.A., Paulino, P.V.R., Mizubuti, I.Y., Pimentel, P.G., Pinto, A.P., Rocha Junior, J.N., 2013. Body composition and net energy and protein requirements of Morada Nova lambs. Small Ruminant Research, 114, 206–213.CrossRefGoogle Scholar
  18. Detmann, E., Souza, M.A., Valadares Filho, S.C., Queiroz, A.C., Berchielli, T.T., Saliba, E.O.S., Cabral, L.S., Pina, D.S., Ladeira, M.M., Azevedo, J.A.G., 2012. Methods of analysis for feed. Visconde do Rio Branco: Suprema, pp. 214.Google Scholar
  19. Facó, O., Paiva, S.R., Alves, L.N., Lôbo, R.N.B., Villila, L.C.V., 2008. New address: Origin, Characteristics and perspectives. Documento 75, Sobral: Embrapa Caprinos, 43. Portuguese.Google Scholar
  20. Fitzhugh, H.A., 1978. Animal size and efficiency, with special reference to the breeding female. Animal Production, 27, 393–401.Google Scholar
  21. Fontoura, A.B.P., Montanholi, Y.R., Diel de Amorim, M., Foster, R.A., Chenier, T., Miller, S.P., 2016. Associations between feed efficiency, sexual maturity and fertility-related measures in young beef bulls. The Animal Consortium, 10, 96–105.Google Scholar
  22. França, L.R., Silva Jr,V.A., Chiarini-Garcia, H., Garcia, S.K., Debeljuk, L., 2000. Cell proliferation and hormonal changes during postnatal development of the testis in the pig. Biology of Reproduction, 63, 1629–1636.CrossRefGoogle Scholar
  23. Freitas, J.V.F., Teixeira, D.I.A., Lopes-Junior, E.S., Paula, N.R.O., Almeida, A.P., 2005. Reproductive management of goats and sheep. From campus to field: Technology for sheep and goat production. 1 ed. Fortaleza: Gráfica Nacional, pp. 241–263.Google Scholar
  24. Galea, L.A., Spritzer, M.D., Barker, J.M., Pawluski, J.L., 2006. Gonadal hormone modulation of hippocampal neurogenesis in the adult. Hippocampus, 16, 225–232.CrossRefGoogle Scholar
  25. Garcia, A. R., Moraes Júnior, R. J., Santos, N. F. A., Nahúm, B.S., Lourenco Junior, J.B., 2010. Morphometric characterization and ponderal performance of buffalo calves raised on Brazilian Amazon. Revista Veterinaria, 21, 796–798.Google Scholar
  26. Gonzaga Neto, W., Sobrinho, A.G.S., Zeola, N.M.B.L., Marques, C.A.T., Silva, A.M.A., Pereira Filho, J.M., Ferreira, A.C.D., 2006. Quantitative characteristics of the carcass of Morada Nova lambs fed different dietary ratios of forage and concentrate. Revista Brasileira de Zootecnia, 35, 1487–1495.CrossRefGoogle Scholar
  27. Hafez, E.S.E., Hafez, B., 2004. Animal reproduction, 7.ed. Barueri: Manole, pp. 513.Google Scholar
  28. Herrera-Alarcón, J., Villagómez-Amezcua, E., González-Padilla, E., Jiménez-Severiano, H., 2007. Stereological study of postnatal testicular development in Blackbelly sheep. Theriogenology, 68, 582–591.CrossRefGoogle Scholar
  29. Hotzel, M.J., Markey, C.M., Walden-Brown, S.W., Blackbeny, M.A., Martin, G.B., 1998. Morphometric and endocrine analyses of the effects of nutrition on the testis of mature Merino rams. Journal of Reproduction and Fertility, 113, 217–230.CrossRefGoogle Scholar
  30. Jacinto, M.A.C., Silva Sobrinho, A.G., Costa, R.G., 2004. Anatomical-Structural Characteristics of Wool-On and Non-Wool Sheep Skins Related to the Physical-Mechanic Leather Aspects. Revista Brasileira de Zootecnia, 33, 1001–1008.CrossRefGoogle Scholar
  31. Kahwage, P.R., Esteves, S.N., Jacinto, M.A.C., Barioni Junior, W., Pezzopane, J.R.M., Pantoja, M.H.A., Bosi, C., Miguel, M.C.V., Mahlmeister, K., Garcia, A.R., 2017. High systemic and testicular thermolytic efficiency during heat tolerance test reflects better semen quality in rams of tropical breeds. International Journal of Biometeorology, 61, 1819–1829.CrossRefGoogle Scholar
  32. Kilkenny, C., Browne, W.J., Cuthill, I.C., Emerson, M., Altman, D.G., 2010. Animal research: reporting in vivo experiments: The ARRIVE guidelines. PLoS Biol, 8, 1000412.CrossRefGoogle Scholar
  33. Li, Z., Li, Y., Zhou, X., Cao, Y., Li, C., 2017. Preventive effects of supplemental dietary zinc on heat-induced damage in the epididymis of boars. Journal of Thermal Biology, 64, 58–66.CrossRefGoogle Scholar
  34. Mahgoub, O., Lu, C.D., Early, R.J., 2000. Effects of dietary energy density on feed intake, body weight gain and carcass chemical composition of Omani growing lambs. Small Ruminant Research, 37, 35–42.CrossRefGoogle Scholar
  35. NRC., 2007. “National Research Council: NRC. Nutrient requirements of small ruminants”. Washington, DC: National Academy Press, pp. 362.Google Scholar
  36. Oliveira, M.F., Ojeda Filho, S.C.F., Hernández, I., Leite, L., Souza, J.C., Abreu, U.G.P., Sereno, J.R.B., 2007. Phenotypic evaluation of sheep of the Texel breed raised in the upper part of the Pantanal. Corumbá: Embrapa Pantanal, Boletim de Pesquisa e Desenvolvimento, 76.Google Scholar
  37. Paiva, S.R., Silvério, V.C., Egito, A.A., McManus, C., Faria, D.A., Mariante, A.S., Castro, S.R., Albuquerque, M.S.M., Dergam, J.A., 2005. Genetic variability of the Brazilian hair sheep breeds. Pesquisa Agropecuária Brasileira, 40, 887–893.CrossRefGoogle Scholar
  38. Pang, J., Li, F., Feng, X., Yang, H., Han, L., Fan, Y., Nie, H., Wang, Z., Wang, F., Zhang, Y., 2017. Influences of different dietary energy level on sheep testicular development associated with AMPK/ULK1/autophagy pathway. Theriogenology, 14, 362–370.Google Scholar
  39. Pinheiro, R.S.B., Jorge, A.M., 2010. Biometric measurements obtained in vivo and in the carcass of culled ewes at different physiological stages. Revista Brasileira de Zootecnia, 39, 440–445.CrossRefGoogle Scholar
  40. Piola Junior, W., Ribeiro, E.L.A., Mizobuti, I.Y., Silva, L.D.F., Sousa, B.L., Paiva, F.H.P., 2009. Levels of energy in the feeding of feedlot lambs and the regional and tissue carcass composition. Revista Brasileira de Zootecnia, 38, 1797–1802.CrossRefGoogle Scholar
  41. Pires, A.V., 2011. Nutritional aspects related to reproduction. In: Berchielli, T.T., Pires, A.V., Oliveira, S.G. Ruminant Nutrition. Jaboticabal: FUNEP, pp. 537–559.Google Scholar
  42. Prophet, E.B., Mills, B., Arrington, J.B., Sobin, L.H., 1992. Laboratory Methods in Histotechnology. Armed Forces Institute of Pathology, American Registry of Pathology, Washington, DC, 279.Google Scholar
  43. Ribeiro, E.L.A., González-García, E., 2016. Indigenous sheep breeds in Brazil: potential role for contributing to the sustainability of production systems. Tropical Animal Health and Production, 48, 1305–1313.CrossRefGoogle Scholar
  44. Rojas-García, P.P., Recabarren, M.P., Sarabia, L., Schön, J., Gabler, C., Einspanier, R., Maliqueo, M., Sir-Petermann, T., Rey, R., Recabarren, S.E., 2010. Prenatal testosterone excess alters Sertoli and germ cell number and testicular FSH receptor expression in rams. American Journal of Physiology-Endocrinology and Metabolism, 299, 998–1005.CrossRefGoogle Scholar
  45. Russell, L.D., Bartke, A., Goh, J.C., 1989. Postnatal development of the Sertoli cell barrier, tubular lumen, and cytoskeleton of Sertoli and myoid cells in the rat, and their relationship to tubular fluid secretion and flow. American Journal of Anatomy, 184, 179–189.CrossRefGoogle Scholar
  46. Santos, M.D., Torres, C.A.A., Ruas, J.R.M., Machado, G.V., Costa, D.S., Ângulo, L.M., 2000. Concentração sérica de testosterona em touros Zebu. Revista Brasileira de Zootecnia, 29, 738–744.CrossRefGoogle Scholar
  47. Santos, J.R.S., Souza, B.B., Souza, W.H., Cezar, M.F., Tavares, G.P., 2006. Physiologic responses and thermal variation of Santa Inês, Morada Nova sheep and their crossbreed with Dorper breed to the semi-arid northeastern of Brazil. Ciência Agrotécnica, 30, 995–1001.CrossRefGoogle Scholar
  48. SAS, 2012. “SAS Institute: System for Microsoft Windows”, Release 9.4, Cary, NC, USA.Google Scholar
  49. Schanbacher, B.D., Gomes, W.R., VanDemark, N.L., 1974. Developmental changes in spermatogenesis, testicular carnitine acetyltransferase activity and serum testosterone in the ram. Journal of Animal Science, 39, 889–892.
  50. Selvaraju, W., Sivasubramani, T., Raghavendra, B.S., Raju, P., Rao, S.B.N., Dineshkumar, D., Ravindra, J.P., 2012. Effect of dietary energy on seminal plasma insulin-like growth factor-I (IGF-I), serum IGF-I and testosterone levels, semen quality and fertility in adult rams. Theriogenology, 78, 646–655.CrossRefGoogle Scholar
  51. Sousa, W.H., Cartaxo, F.Q., Costa, R.G., Cezar, M.F., Gomes Cunha, M.G.G., Pereira Filho, J.M., Santos, N.M., 2012. Biological and economic performance of feedlot lambs feeding on diets with different energy densities. Revista Brasileira de Zootecnia, 41, 1285–1291.CrossRefGoogle Scholar
  52. Sousa, F. M. L., Lobo, C. H., Menezes, E. S. B., Rego, J. P. A., Oliveira, R. V., Lima-Souza, A.C., Fioramonte, M., Gozzo, F.C., Pompeu, R.C.F.F., Cândido, M.J.D., Oliveira, J.T., Moura, A.A., 2014. Parameters of the Reproductive Tract, Spermatogenesis, Daily Sperm Production and Major Seminal Plasma Proteins of Tropically Adapted Morada Nova Rams. Reproduction in Domestic Animal, 49, 409–419.CrossRefGoogle Scholar
  53. Sowande, O.S., Sobola, O.S., 2008. Body measurements of west African dwarf sheep as parameters for estimation of live weight. Tropical Animal Health and Production, 40, 433–439.CrossRefGoogle Scholar
  54. Tedeschi, L.O., Cannas, A., Fox, D.G.A., 2010. Nutrition mathematical model to account for dietary supply and requirements of energy and other nutrients for domesticated small ruminants: The development and evaluation of the Small Ruminant Nutrition System. Small Ruminant Research, 89, 174–184.CrossRefGoogle Scholar
  55. Toe F., Rege, J.E.O., Mukasa-Mugerwa, E., Tembely, W., Anindo, D., Baker, R.L., Lahlou-Kassi, A., 2000. Reproductive characteristics of Ethiopian highland sheep I. Genetic parameters of testicular measurements in ram lambs and relationship with age at puberty in ewe lambs. Small Ruminant Research, 36, 227–240.CrossRefGoogle Scholar
  56. Valasi, I., Chadio, S., Fthenakis, G.C., Amiridis, G.S., 2012. Management of pre-pubertal small ruminants: Physiological basis and clinical approach. Animal Reproduction Science, 130, 126–134.CrossRefGoogle Scholar
  57. Zhou, C.X., Zhang, Y.L., Xiao, L.Q., Zheng, M., Leung, K.M., Chan, M.Y., Lo, P.S., 2004. An epididymis-specific beta-defensin is important for the initiation of sperm maturation. Nature Cell Biology, 6, 458–464.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Andréa do Nascimento Barreto
    • 1
  • André Guimarães Maciel e Silva
    • 1
  • Sergio Novita Esteves
    • 2
  • Manuel Antonio Chagas Jacinto
    • 2
  • Waldomiro Barioni Junior
    • 2
  • Felipe Zandonadi Brandão
    • 3
  • Messy Hannear de Andrade Pantoja
    • 4
  • Daniela Botta
    • 1
  • Narian Romanello
    • 4
  • Amanda Prudêncio Lemes
    • 5
  • Alessandro Giro
    • 1
  • Alexandre Rossetto Garcia
    • 2
    Email author
  1. 1.Institute of Veterinary MedicineFederal University of ParáCastanhalBrazil
  2. 2.Laboratory of Animal Reproduction, Brazilian Agricultural Research CorporationEmbrapa Southeast Livestock/Embrapa Pecuária Sudeste (CPPSE/Embrapa)São CarlosBrazil
  3. 3.Faculty of Veterinary MedicineFluminense Federal UniversityNiteróiBrazil
  4. 4.University of São PauloPirassunungaBrazil
  5. 5.São Paulo State University “Júlio de Mesquita Filho”JaboticabalBrazil

Personalised recommendations