Effects of probiotic lactic acid bacteria on growth performance, carcass characteristics, hematological indices, humoral immunity, and IGF-I gene expression in broiler chicken

Abstract

The effects of screened lactic acid bacteria strains were evaluated on growth performance, humoral immunity, and IGF-1 gene expression in broiler chickens. The three dietary groups of negative control fed basal diet, the native LAB probiotic group (NP), and PrimaLac commercial LAB probiotic (PC) were studied. The results revealed that NP and PC diets significantly improved feed conversion ratio and increased body weight, as well as relative weight of carcass compared with group fed NC diet (P < 0.05). Lymphocyte level was significantly increased in birds fed NP and PC (P < 0.01), while serum triglycerides and total cholesterol levels were significantly decreased compared with the NC (P < 0.05). Significant increases were observed in antibody titers against Newcastle disease virus of vaccinated birds (P < 0.03), and morphological analysis of ileum revealed significant increases (P < 0.05) in the villus height and villus height/crypt depth in birds fed NP and PC compared with the NC. The dietary significantly increased Lactobacillus spp. (P < 0.05), while Escherichia coli (P < 0.04) populations were significantly decreased, and also, the expression of IGF-1 gene in liver tissue of broilers fed NP and PC was significantly increased compared with the NC (P < 0.05). These results indicated that the identified native LAB strains can be used commercially as a low-cost probiotic in poultry industry of Iran.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Afsharmanesh, M., Sadaghi, B. and Silversides, F.G. 2013. Influence of supplementation of prebiotic, probiotic, and antibiotic to wet-fed wheat-based diets on growth, ileal nutrient digestibility, blood parameters, and gastrointestinal characteristics of broiler chickens. Comparative Clinical Pathology, 22, 245–251.

    Article  Google Scholar 

  2. Ahmadivand, S., Eagderi, S. and Imanpour, M.R. 2013. The skeletal deformity in response of dietary phosphorus and calcium level in the Caspian roach (Rutilus rutilus caspicus) larvae. International Journal of Aquatic Biology, 1, 93–99.

    Google Scholar 

  3. Angel, R., Dalloul, R.A., Doerr, J. 2005. Performance of broiler chickens fed diets supplemented with a direct-fed microbial. Poultry science, 84(8):1222–31.

    Article  PubMed  Google Scholar 

  4. Awad, W.A., Ghareeb, K., Abdel-Raheem, S. and Böhm, J. 2009. Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poultry Science, 88, 49–56.

    Article  PubMed  Google Scholar 

  5. Beski, S.S.M. and Al-Sardary, S.Y.T. 2015. Effects of dietary supplementation of probiotic and synbiotic on broiler chickens hematology and intestinal integrity. International Journal of Poultry Science, 14, 31.

    Article  Google Scholar 

  6. Carvalho, N., Hansen, S. 2005. Prospects for probiotics in broilers. Feed Int 26, 9–11.

  7. Chang, H.S. 2007. Overview of the world broiler industry: Implications for the Philippines. Asian Journal of Agriculture and Development, 4, 67–82.

    Google Scholar 

  8. Chim-anage, P., Hirunvong, V., Sirirote, P., Malaphan, W., Yongsmith, B., Isariyodom, S., Tirawattanawanich, C., Chitanont, W., Talsook, P. 2008. Effect of Feed Supplementation of Lactic Acid Bacteria on Microbial Changes in Broiler Intestine. Kasetsart J, 42, 269–276.

    Google Scholar 

  9. Corcionivoschi, N., Drinceanu, D., Stef, L., Luca, I. and Julean, C. 2010. Probiotics–identification and ways of action. Innovative Romanian Food Biotechnology, 6, 1.

    Google Scholar 

  10. Dec M., Puchalski A., Nowaczek A., Wernicki A. 2016. Antimicrobial Activity of Lactobacillus Strains of Chicken Origin against Bacterial Pathogens, Int. Microbiol., 19, pp. 57–67.

    PubMed  Google Scholar 

  11. El-Sissi, A.F., Mohamed, S.H. 2011. Impact of symbiotic on the immune response of broiler chickens against NDV and IBV vaccines. Global Journal of Biochemistry and Biotechnology, 2011;6:186–91.

    Google Scholar 

  12. Ferket, P.R., Gernat, A.G. 2006. Factors that affect feed intake of meat birds: A review. Int. J. Poult. Sci, 5, 905–911.

    Article  Google Scholar 

  13. García-Hernández, Y., Pérez-Sánchez, T., Boucourt, R., Balcázar, J.L., Nicoli, J.R., Moreira-Silva, J., Rodríguez, Z., Fuertes, H., Nuñez, O., Albelo, N., Halaihel, N. 2016. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Research in Veterinary Science, 108:125–32.

    Article  PubMed  Google Scholar 

  14. Ghadban, G. S. 2002. Probiotics in broiler production—a review. Arch. Geflugelk, 66, 49–58.

    Google Scholar 

  15. Haghighi, H.R., Gong, J., Gyles, C.L., Hayes, M.A., Zhou, H., Sanei, B., Chambers, J.R. and Sharif, S. 2006. Probiotics stimulate production of natural antibodies in chickens. Clin. Vaccine Immunol., 13, 975–980.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Heravi, R. M., Kermanshahi, H., Sankian, M., Nassiri, M. R., Moussavi, A. H., Nasiraii, L. R., Varasteh, A. R. 2011. Screening of lactobacilli bacteria isolated from gastrointestinal tract of broiler chickens for their use as probiotic. African J. Microb. Res. 5(14), 1858–1868.

  17. Idoui, T. and Karam, N.E. 2016. Effects of autochthonous probiotic feeding on performances, carcass traits, serum composition and fecal microflora of broiler chickens. Sains Malaysiana, 45, 347–353.

    Google Scholar 

  18. Jannah, S. N., Dinoto, A., Wiryawan, K. G., Rusmana, I. 2014. Characteristics of lactic acid bacteria isolated from gastrointestinal tract of Cemani chicken and their potential use as probiotics. Media Peternakan, 37(3), 182–189.

    Article  Google Scholar 

  19. Kareem, K.Y., Loh, T.C., Foo, H.L., Akit, H. and Samsudin, A.A. 2016. Effects of dietary postbiotic and inulin on growth performance, IGF1 and GHR mRNA expression, fecal microbiota and volatile fatty acids in broilers. BMC veterinary research, 12, 163.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. and Bäckhed, F. 2016. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 165, 1332–1345.

    Article  PubMed  Google Scholar 

  21. Livak, K.J. and Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25, 402–408.

    Article  PubMed  Google Scholar 

  22. Mountzouris, K.C., Tsirtsikos, P., Kalamara, E., Nitsch, S., Schatzmayr, G. and Fegeros, K. 2007. Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poultry science, 86, 309–317.

    Article  PubMed  Google Scholar 

  23. Neveling, D.P., Van Emmenes, L., Ahire, J.J., Pieterse, E., Smith, C. and Dicks, L.M.T. 2017. Safety assessment of antibiotic and probiotic feed additives for Gallus gallus domesticus. Scientific reports, 7, 12,767.

    Google Scholar 

  24. Noohi, N., Ebrahimipour, G., Rohani, M., Talebi, M. and Pourshafie, M.R. 2016. Phenotypic characteristics and probiotic potentials of Lactobacillus spp. isolated from poultry. Jundishapur journal of microbiology, 7(9).

  25. Pourakbari, M., Seidavi, A., Asadpour, L., Martínez, A. 2016. Probiotic level effects on growth performance, carcass traits, blood parameters, cecal microbiota, and immune response of broilers. Anais da Academia Brasileira de Ciências, 88, 1011–1021.

    Article  PubMed  Google Scholar 

  26. Quinto, E.J., Jiménez, P., Caro, I., Tejero, J., Mateo, J., Girbés, T. 2014. Probiotic lactic acid bacteria: A review. Food Nutr. Sci., 5, 1765–1775.

    Google Scholar 

  27. Rahmani, H.R., Speer, W. and Modirsanei, M. 2005. The effect of intestinal pH on broiler performance and immunity. In Proceedings of the 15th European Symposium on poultry nutrition, Balatonfüred, Hungary, World’s Poultry Science Association (WPSA).

  28. Sas, S. A. S., & Guide, S. U. S. (2003). Version 9.1. SAS Institute Inc., Cary, NC.

  29. Shokryazdan, P., Jahromi, M.F., Liang, J.B., Ramasamy, K., Sieo, C.C. and Ho, Y.W. 2017. Effects of a Lactobacillus salivarius mixture on performance, intestinal health and serum lipids of broiler chickens. PloS one, 12(5), p. e0175959.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Soltani, M., Ahmadivand, S., Behdani, M., Hassanzadeh, R., Rahmati-Holasoo, H., Taheri-Mirghaed, A., 2016. Transcription of adaptive-immune genes upon challenge with infectious pancreatic necrosis virus (IPNV) in DNA vaccinated rainbow trout. International Journal of Aquatic Biology, 4, 353–359.

    Google Scholar 

  31. Sri-Harimurti, H.M.2013. The dynamics of indigenous lactic acid bacteria probiotics on carcass yield, abdominal fat and intestinal morphology of broilers. InProceeding of the 3rd AINI international seminar, Padang, West Sumatera, Indonesia (pp. 24–26).

  32. Taheri, H.R., Moravej, H., Tabandeh, F., Zaghari, M. and Shivazad, M. 2009. Screening of lactic acid bacteria toward their selection as a source of chicken probiotic. Poultry Science, 88, 1586–1593.

    Article  PubMed  Google Scholar 

  33. Talebi, A., Amirzadeh, B., Mokhtari, B. and Gahri, H. 2008. Effects of a multi-strain probiotic (PrimaLac) on performance and antibody responses to Newcastle disease virus and infectious bursal disease virus vaccination in broiler chickens. Avian Pathology, 37, 509–512.

    Article  PubMed  Google Scholar 

  34. Vanderpool, C., Yan, F., Polk, D.B. 2008. Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflammatory Bowel Diseases, 14, 1585–1596.

    Article  PubMed  Google Scholar 

  35. Wu, B.Q., Zhang, T., Guo, L.Q., Lin, J.F. 2011. Effects of Bacillus subtilis KD1 on broiler intestinal flora. Poultry Science, 90, 2493–2499.

    Article  PubMed  Google Scholar 

  36. Zaghari, M., Zahroojian, N., Riahi, M. and Parhizkar, S. 2015. Effect of Bacillus subtilis spore (GalliPro®) nutrients equivalency value on broiler chicken performance. Italian Journal of Animal Science, 14, 3555.

    Article  Google Scholar 

  37. Zhang, M., Xuan, S., Bouxsein, M.L., Von Stechow, D., Akeno, N., Faugere, M.C., Malluche, H., Zhao, G., Rosen, C.J., Efstratiadis, A. and OClemens, T.L. 2002. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. Journal of Biological Chemistry, 277, 44,005–44,012.

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Tak Gen Zist Company and Dr. Ayoub Farhadi (Lab. for Molecular Genetics, SANRU) for their help and patience. This research did not receive any specific funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maryam Tajabadi Ebrahimi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salehizadeh, M., Modarressi, M.H., Mousavi, S.N. et al. Effects of probiotic lactic acid bacteria on growth performance, carcass characteristics, hematological indices, humoral immunity, and IGF-I gene expression in broiler chicken. Trop Anim Health Prod 51, 2279–2286 (2019). https://doi.org/10.1007/s11250-019-01935-w

Download citation

Keywords

  • LAB
  • Microflora population
  • Feed conversion ratio
  • Commercial probiotic
  • Intestinal morphology