Simulation modeling of influenza transmission through backyard pig trade networks in a wildlife/livestock interface area

Abstract

Influenza constitutes a challenge to animal and human health. It is a highly contagious disease with wildlife reservoirs and considered as endemic among swine populations. Pigs are crucial in the disease dynamics due to their capacity to generate new reassortant viruses. The risk of informal animal trade in the spread of zoonotic diseases is well recognized worldwide. Nevertheless, the contribution of the backyard pig trade network in the transmission of influenza in a wildlife/livestock interface area is unknown. This study provides the first simulation of influenza transmission based on backyard farm connections in Mexico. A susceptible-infectious-recovered (SIR) model was implemented using the Epimodel software package in R, and 260 backyard farms were considered as nodes. Three different scenarios of connectivity (low, medium, and high) mediated by trade were generated and compared. Our results suggest that half of the pig population were infected within 5 days in the high connectivity scenario and the number of infected farms was approximately 65-fold higher compared to the low connected one. The consequence of connectivity variations directly influenced both time and duration of influenza virus transmission. Therefore, high connectivity driven by informal trade constitutes a significant risk to animal health. Trade patterns of animal movements are complex. This approach emphasizes the importance of pig movements and spatial dynamics among backyard production, live animal markets, and wildlife.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Büttner, K., Krieter, J., Traulsen, A. and Traulsen, I., 2013. Static network analysis of a pork supply chain in Northern Germany—Characterisation of the potential spread of infectious diseases via animal movements Preventive Veterinary Medicine, 110, 418–428

    Article  PubMed  Google Scholar 

  2. Cappelle, J., Gaidet, N., Iverson, S.A., Takekawa, J.Y., Newman, S.H., Fofana, B. and Gilbert, M., 2011. Characterizing the interface between wild ducks and poultry to evaluate the potential of transmission of avian pathogens International Journal of Health Geographics, 10, 60

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cisneros, L.F., Valdivia, A.G., Waldrup, K., Díaz-Aparicio, E., Martínez-de-Anda, A., Cruz-Vázquez, C.R. and Ortiz, R., 2012. Surveillance for Mycobacterium bovis transmission from domestic cattle to wild ruminants in a Mexican wildlife-livestock interface area American Journal of Veterinary Research, 73, 1617–1625

    Article  PubMed  Google Scholar 

  4. De la Rosa, M. del P., 2007. Aspectos socioculturales, económicos, sanitarios y bienestar animal que influyen en la conducta de las personas que comercializan équidos en el mercado de San Bernabé, Almoloya de Juárez, Estado de México (Universidad Nacional Autónoma de México: Ciudad de México)

    Google Scholar 

  5. Dorjee, S., Poljak, Z., Revie, C.W., Bridgland, J., McNab, B., Leger, E. and Sanchez, J., 2013. A Review of Simulation Modelling Approaches Used for the Spread of Zoonotic Influenza Viruses in Animal and Human Populations: Approaches to Modelling Influenza Zoonoses and Public Health, 60, 383–411

    Article  CAS  PubMed  Google Scholar 

  6. Fasina, F.O., Mokoele, J.M., Spencer, B.T., Van Leengoed, L.A.M.L., Bevis, Y. and Booysen, I., 2015. Spatio-temporal patterns and movement analysis of pigs from smallholder farms and implications for African swine fever spread, Limpopo province, South Africa Onderstepoort J Vet Res, 82

  7. Févre, E.M., Bronsvoort, B.M. de C., Hamilton, K.A. and Cleaveland, S., 2006. Animal movements and the spread of infectious diseases Trends in Microbiology, 14, 125–131

    Article  CAS  PubMed  Google Scholar 

  8. Gutiérrez-Ruiz EJ, Aranda-Cirerol FJ, Rodríguez-Vivas RI, Bolio-González ME, Ramírez González S and Estrella-Tec J, 2012. Factores sociales de la crianza de animales de traspatio en Yucatán, México Bioagrociencias, 5, 20–28

    Google Scholar 

  9. Kukielka, E.A., Martínez-López, B. and Beltrán-Alcrudo, D., 2017. Modeling the live-pig trade network in Georgia: Implications for disease prevention and control PLOS ONE, 12, e0178904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lebl, K., Lentz, H.H.K., Pinior, B. and Selhorst, T., 2016. Impact of Network Activity on the Spread of Infectious Diseases through the German Pig Trade Network Frontiers in Veterinary Science, 3

  11. Leslie, E.E.C., Geong, M., Abdurrahman, M., Ward, M.P. and Toribio, J.-A.L.M.L., 2016. Live pig markets in eastern Indonesia: Trader characteristics, biosecurity and implications for disease spread Acta Tropica, 155, 95–103

    Article  PubMed  Google Scholar 

  12. Miguel, E., Grosbois, V., Caron, A., Boulinier, T., Fritz, H., Cornélis, D., Foggin, C., Makaya, P.V., Tshabalala, P.T. and de Garine-Wichatitsky, M., 2013. Contacts and foot and mouth disease transmission from wild to domestic bovines in Africa Ecosphere, 4, art51

    Article  Google Scholar 

  13. Miller, R.S., Farnsworth, M.L. and Malmberg, J.L., 2013. Diseases at the livestock–wildlife interface: Status, challenges, and opportunities in the United States Preventive Veterinary Medicine, 110, 119–132

    Article  PubMed  Google Scholar 

  14. National Institute of Statistics and Geography (INEGI), 2007. Censo Agrícola, Ganadero y Forestal, (México)

  15. Pohlmann, A., Starick, E., Harder, T., Grund, C., Höper, D., Globig, A., Staubach, C., Dietze, K., Strebelow, G., Ulrich, R.G., Schinköthe, J., Teifke, J.P., Conraths, F.J., Mettenleiter, T.C. and Beer, M., 2017. Outbreaks among Wild Birds and Domestic Poultry Caused by Reassorted Influenza A(H5N8) Clade 2.3.4.4 Viruses, Germany, 2016 Emerging Infectious Diseases, 23, 633–636

    Article  PubMed  PubMed Central  Google Scholar 

  16. R Development Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, (Vienna, Austria)

  17. Reynolds, J.J.H., Torremorell, M. and Craft, M.E., 2014. Mathematical Modeling of Influenza A Virus Dynamics within Swine Farms and the Effects of Vaccination PLoS ONE, 9, e106177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Romagosa, A., Allerson, M., Gramer, M., Joo, H., Deen, J., Detmer, S. and Torremorell, M., 2011. Vaccination of influenza a virus decreases transmission rates in pigs Veterinary Research, 42, 120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schulz, J., Boklund, A., Halasa, T.H.B., Toft, N. and Lentz, H.H.K., 2017. Network analysis of pig movements: Loyalty patterns and contact chains of different holding types in Denmark PLOS ONE, 12, e0179915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Short, K.R., Richard, M., Verhagen, J.H., van Riel, D., Schrauwen, E.J.A., van den Brand, J.M.A., Mänz, B., Bodewes, R. and Herfst, S., 2015. One health, multiple challenges: The inter-species transmission of influenza A virus One Health, 1, 1–13

    Article  PubMed  PubMed Central  Google Scholar 

  21. Torremorell, M., Allerson, M., Corzo, C., Diaz, A. and Gramer, M., 2012. Transmission of Influenza A Virus in Pigs: Transmission of Influenza Virus in Pigs Transboundary and Emerging Diseases, 59, 68–84

    Article  PubMed  Google Scholar 

  22. Tufiño, C., 2013. Caracterización molecular de los virus de influenza A que circulan en cerdos en la región del Bajío Mexicano (Universidad Nacional Autónoma de México: Ciudad de México)

    Google Scholar 

  23. Wiethoelter, A.K., Beltrán-Alcrudo, D., Kock, R. and Mor, S.M., 2015. Global trends in infectious diseases at the wildlife–livestock interface Proceedings of the National Academy of Sciences, 112, 9662–9667

    Article  CAS  Google Scholar 

  24. Zepeda–Gómez, C., Lot–Helgueras, A., Nemiga, X.A. and Madrigal–Uribe, D., 2012. Floristics and diversity of the Lerma river wetlands in the State of Mexico 23–49

Download references

Acknowledgments

The authors are grateful to the National Institute of Statistics and Geography (INEGI) for the information obtained in the “Censo Agrícola, Ganadero y Forestal 2007” and the facilities for data processing in the Microdata Laboratory. We also acknowledge the help provided by the Academic Writing Team at Universidad Nacional Autónoma de México for the text edition.

Funding

The study received financial support from the PAPIIT project IA-205916.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rafael Ojeda-Flores.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standards

The manuscript does not contain clinical studies or patient data.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mateus-Anzola, J., Wiratsudakul, A., Rico-Chávez, O. et al. Simulation modeling of influenza transmission through backyard pig trade networks in a wildlife/livestock interface area. Trop Anim Health Prod 51, 2019–2024 (2019). https://doi.org/10.1007/s11250-019-01892-4

Download citation

Keywords

  • Animal movement
  • Epidemiology
  • Orthomyxoviridae
  • Stochastic model
  • Swine