Tropical Animal Health and Production

, Volume 50, Issue 3, pp 477–484 | Cite as

Supplementation of pig diets in the growth and termination phases with different calcium sources

  • Ana Lúcia Almeida Santana
  • Paulo Levi de Oliveira Carvalho
  • Eliseu Carlos Cristofori
  • Poliana Caroline da Silva Chambo
  • Mariana Barbizan
  • Ricardo Vianna Nunes
  • Cristine Regina Gregory
  • Jansller Luiz Genova
Regular Articles
  • 32 Downloads

Abstract

The aim of this study was to evaluate the effect of supplementation of pig diets in the growth and termination phases with different calcium sources. In experiment I, 36 whole males were distributed in randomized blocks in six groups, with six replications. A basal diet was formulated to meet the animals’ nutritional requirements except for calcium (0.09%), and the sources evaluated (calcitic limestone, monodicalcium phosphate, calcinated bone flour, and oyster flour) replaced the basal diet to provide 0.59% of total calcium. To determine the endogenous calcium, a diet containing low calcium (0.019%) was given simultaneously to another group of animals. Feces and urine were collected for determination the coefficients of apparent and true digestibility. In experiment II, 160 piglets were distributed in randomized blocks in four treatments, with five replications and four animals per experimental unit. Carcass and performance parameters, calcium concentration in bone and serum, and bone parameters were evaluated. The data were submitted to analysis of variance and factorial. The calcium source did not influence the digestibility coefficients determined by total collection (P > 0.05). The digestibility of Ca from oyster flour estimated by collection with an indicator was higher than that from the other sources (P < 0.05). Calcium sources did not interfere in the evaluated parameters (P > 0.05). The sources studied in this work can be used to supplement growing pigs’ diets.

Keywords

Calcium deposition Digestibility Oyster flour Pigs 

Notes

Compliance with ethical standards

Statement of animal rights

The project was undertaken in accordance with the regulations approved by the UNIOESTE Ethics Committee on Animal Use (Protocol No. 80/14). The manuscript does not contain clinical studies or patient data.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Almeida Paz, I.C.L., Mendes, A.A., Balog, A., Martins, M.R.F.B., Almeida, I.C.L., Fernandes, B.C.S., Milbradt, E.L., Vulcano, L.C., Komiyama, C.M. and Cardoso, K.F.G., 2010. Níveis de cálcio e avaliação óssea e de ovos de avestruzes reprodutoras. Archivos de Zootecnia, 59, 459–462CrossRefGoogle Scholar
  2. AOAC - Association of Official Analytical Chemistry. Official methods of analysis, 1990. Washington, D.C., 15th, 684pGoogle Scholar
  3. Argüello, A., Castro, N., Capote, J. and Solomon, M., 2005. Effects of diet and live weight at slaughter on kid meat quality. Meat Science, 70, 173–179CrossRefPubMedGoogle Scholar
  4. Bridi, A.M. and Silva, C.A., 2009. Avaliação da carne suína, (Publishing company Midiograf, Londrina)Google Scholar
  5. Bünzen, S., Rostagno, H.S., Lopes, D.C., Gomes, P.C., Hashimoto, F.A.M., Apolônio, R.L. and Borsatto, C.G., 2009. Digestibilidade aparente e verdadeira do fósforo de alimentos de origem animal para suínos. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 61, 903–909CrossRefGoogle Scholar
  6. Cowieson, A.J., Wilcock, P. and Bedford, M.R., 2011. Super-dosing effects of phytase in poultry and other monogastrics. World’s Poultry Science Journal, 67, 225–235CrossRefGoogle Scholar
  7. Cozzolino, S.M.F., 2009. Cálcio. In.: Silva, A.G.H. and Cozzolino, S.M.F. (eds), Biodisponibilidade de Nutrientes, (Manole, Barueri, 3rd ed), 513–523Google Scholar
  8. Évora, P.R.B., Reis, C.L., Ferez, M.A., Conte, D.A. and Garcia, L.V., 1999. Distúrbios do equilíbrio hidroelétrico e do equilíbrio acidobásico—uma revisão prática. Medicina, 32, 451–469Google Scholar
  9. Fialho, E.T., Barbosa, H.P., Bellaver, C., Gomes, P.C. and Junior, W.B., 1992. Avaliação nutricional de algumas fontes de suplementação de cálcio para suínos. Biodisponibilidade e desempenho. Revista Brasileira de Zootecnia, 21, 891–905Google Scholar
  10. Friendship, R.M. and Henry, S.C., 1992. Cardiovascular system, hematology, and clinical chemistry. In: Leman, A.D., Straw, B.E., Mengeling, W.L., D’allaire, S. and Taylor, D.J. (eds), Diseases of swine, (Ames: Iowa State University Press, 7th ed.), 3–11Google Scholar
  11. Furlan, A.C. and Pozza, P.C., 2014. Exigências de Minerais para Suínos. In: Sakomura, N.K., Silva, J.H.V., Costa, F.G.P., Fernandes, J.B.K. and Hauschild, L. (eds), Nutrição de Não Ruminantes, (Funep, Jaboticabal, 1st ed.), 403–423Google Scholar
  12. González F.H.D., Conceição T.R., Siqueira A.J.S., La Rosa V.L., 2000. Variações sangüíneas de uréia, creatinina, albumina e fósforo em bovinos de corte no Rio Grande do Sul. A Hora Veterinária, 20, 59–62.Google Scholar
  13. González-Vega, J.C. and Stein, H.H., 2014. Calcium digestibility and metabolism in pigs (Invited review). Asian-Australian Journal Animal Science, 27, 1–9CrossRefGoogle Scholar
  14. Henn, J.D. Bioquímica do tecido ósseo. 2010. http://www6.ufrgs.br/favet/lacvet/restrito/pdf/osso_henn.pdf. Accessed in: 13 of November of 2015
  15. Kavanagh, S., Lynch, P.B., Mara, O.F. and Cafrey, P.J. 2001. A comparison of total collection and marker technique for the measurement of apparent digestibility of diets for growing pigs. Animal Feed Science and Technology, 89, 49–58CrossRefGoogle Scholar
  16. Koohmaraie, M. and Geesink, G.H., 2006. Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Science, 74, 34–43CrossRefPubMedGoogle Scholar
  17. Lage, J.F., Oliveira, I.M. and Paulino, P.V.R., 2009. Papel do sistema calpaína-calpastatina sobre a proteólise muscular e sua relação com a maciez da carne em bovinos de corte. Revista electrónica de Veterinarias 10, 1–19Google Scholar
  18. Maiorka, A. and Macari, M., 2008. Absorção de minerais. In: Macari, M., Furlan, R.L. and Gonzales, E. (eds), Fisiologia Aviária Aplicada a Frangos de Corte, (Funep, Jaboticabal, 2nd ed.), 167–173Google Scholar
  19. Melo, T.V., Mendonça, P.P., Moura, A.M.A., Lombardi, C.T., Ferreira, R.A. and Nery, V.L.H., 2006. Solubilidad in vitro de algunas fuentes de cálcio utilizadas em alimentacion animal. Archivos de Zootecnia, 55, 297–300Google Scholar
  20. Murakami, A.E., Garcia, E.R.M., Martins, E.N., Moreira, I., Scapinello, C. and Oliveira, A.F.G., 2009. Efeito da inclusão de óleo de linhaça nas rações sobre o desempenho e os parâmetros ósseos de frangos de corte. Revista Brasileira de Zootecnia, 38, 1256–1264CrossRefGoogle Scholar
  21. NRC. Nutrient requirements of swine., 1998. (National Academy Press, Washington, DC)Google Scholar
  22. Pekas, J.C., 1968. Versatible swine labotarory apparatus for physiologic and metabolic studies. Journal of Animal Science, 2, 1303–1306CrossRefGoogle Scholar
  23. Rostagno, H.S., Albino, L.F.T., Donzele, J.L., Gomes, P.C., Oliveira, R.F., Lopes, D.C., Ferreira, A.S., Barreto, S.L.T. and Euclides, R.F., 2011. Tabelas brasileiras para aves e suínos, (UFV, Viçosa)Google Scholar
  24. Sakomura, N.K. and Rostagno, H.S., 2007. Métodos de Pesquisa em Animais Monogástricos. (Funep, Jaboticabal)Google Scholar
  25. SAS. System for Windows (Statistical Analysis System), 2002-2008. Version 9.2, (Cary: SAS Institute Inc)Google Scholar
  26. Schmiel, S.E., Yang, J.A., Jenkins, M.K. and Mueller, D.L., 2016. Adenosine A2a receptor signals inhibit germinal center T follicular helper cell differentiation during the primary response to vaccination. The Journal of Immunology, 198, 623–628CrossRefPubMedPubMedCentralGoogle Scholar
  27. Seedor, J.G., Quarruccio, H.A. and Thompson, D.D., 1991. The biophosphonate alendronate (MK-217) inhibits bone loss due to ovariectomy in rats. Journal of Bone and Mineral Research, 6, 339–346CrossRefPubMedGoogle Scholar
  28. Suttle, N.F., 2010. Mineral nutrition of livestock, (Cambridge: CABI)CrossRefGoogle Scholar
  29. Teixeira, A.O., Lopes, D.C., Lopes, J.B., Vitti, D.M.S.S., Gomes, P.C., Lopes, J.B., Costa, L.F., Ferreira, V.P.A., Pena, S.M., Moreira, J.A. and Bünzen, S., 2005. Níveis de Substituição do Fosfato Bicálcico pelo Monobicálcico em Dietas para Suínos nas Fases de Crescimento e Terminação. Revista Brasileira de Zootecnia, 34, 142–150CrossRefGoogle Scholar
  30. Torres, L.C.L., Ferreira, M.A., Guim, A., Vilela, M.S., Guimarães, A.G. and Silva, E.C., 2009. Substituição da palma-gigante por palma-miúda em dietas para bovinos em crescimento e avaliação de indicadores internos. Revista Brasileira de Zootecnia, 38, 2264–2269CrossRefGoogle Scholar
  31. Zanatta, C.P., Gabeloni, L.R., Félix, A.P., Brito, C.B.M., Oliveira, S.G. and Maiorka, A., 2013. Metodologias para determinação da digestibilidade de dietas contendo fontes proteicas vegetal ou animal em cães. Ciência Rural, 43, 696–701CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Ana Lúcia Almeida Santana
    • 1
  • Paulo Levi de Oliveira Carvalho
    • 2
  • Eliseu Carlos Cristofori
    • 2
  • Poliana Caroline da Silva Chambo
    • 2
  • Mariana Barbizan
    • 2
  • Ricardo Vianna Nunes
    • 2
  • Cristine Regina Gregory
    • 2
  • Jansller Luiz Genova
    • 2
  1. 1.Universidade Federal da BahiaSalvadorBrazil
  2. 2.Universidade Estadual do Oeste do ParanáMarechal Cândido RondonBrazil

Personalised recommendations