Skip to main content
Log in

Phylogeny of Trypanosoma brucei and Trypanosoma evansi in naturally infected cattle in Nigeria by analysis of repetitive and ribosomal DNA sequences

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

In continuing efforts to better understand the genetics of bovine trypanosomosis, we assessed genetic diversity of Trypanosoma brucei and Trypanosoma evansi in naturally infected Nigerian cattle using repetitive DNA and internal transcribed spacer 1 of rDNA sequences and compared these sequences to species from other countries. The length of repetitive DNA sequences in both species ranged from 161 to 244 bp and 239 to 240 bp for T. brucei and T. evansi, respectively, while the ITS1 rDNA sequences length range from 299 to 364 bp. The mean GC content of ITS1 rDNA sequences was 33.57 %, and that of repetitive sequences were 39.9 and 31.1 % for T. brucei and T. evansi, respectively. Result from sequence alignment revealed both T. brucei and T. evansi repetitive DNA sequences to be more polymorphic than ITS1 rDNA sequences, with moderate points of deletion and insertions. T. brucei separated into two clades when subjected to phylogenetic analysis. T. evansi repetitive DNA sequences clustered tightly within the T. brucei clade while the ITS1 rDNA sequences of T. brucei were clearly separated from T. theileri and T. vivax individually used as outgroups. This study suggest that ITS1 rDNA sequences may not be suitable for phylogenetic differentiation of the Trypanozoon group and also suggest that T. evansi may be a phenotypic variant of T. brucei which may have potential implications in designing prevention and therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agbo, E. C., Majiwa, P. A. O., Claassen, E. J. H. M and Roos, M. H. 2001. Measure of Molecular diversity within the Trypanosoma brucei sub-species Trypanosoma brucei brucei and Trypanosoma brucei gambiense as revealed by genotypic characterization. Experimental Parasitology. 99, 123 – 131.

    Article  CAS  PubMed  Google Scholar 

  • Agbo, E. E., Majiwa, P.A., Claassen, H. J., Te Pas, M. F. 2002. Molecular variation of Trypanosoma brucei subspecies as revealed by AFLP fingerprinting. Parasitology. 124, 349–58.

    Article  CAS  PubMed  Google Scholar 

  • Areekit,S., Singhaphan,P., Kanjanavas,P., Khuchareon-taworn,S., Sriyapai,T., Pakpitcharoen,A. and Chansiri,K. 2008. Genetic diversity of Trypanosoma evansi in beef cattle based on internal transcribed spacer region. Infection, Genetics and Evolution. 8, 484–488.

  • Carnes, J., Anupama, A., Balmer, O., Jackson, A., Lewis, M., Brown, R., Cestari,I., Desquesnes, M., Gendrin,C., Hertz-Fowler,C., Imamura,H., Ivens,A., Kořený,L., Lai,D. H., MacLeod, A., McDermott,S. M., Merritt,C., Monnerat,S., Moon,W., Myler,P., Phan,I., Ramasamy, G., Sivam,D., Lun,Z. R., Lukeš,J., Stuart,K. and Schnaufer. et al. 2015. Genome and Phylogenetic Analyses of Trypanosoma evansi Reveal Extensive Similarity to T. brucei and Multiple Independent Origins for Dyskinetoplasty. PLoS Negl Trop Dis. 9(1), e3404. doi:10.1371/journal.pntd.0003404

  • Claes,F., Agbo,E. C., Radwanska,M., Te Pas,M. F., Baltz,T., De Waal,D. T., Goddeeris,B. M., Claassen,E. and Buscher, P. 2003. How does T. equiperdum fit into the Trypanozoon genus? A cluster analysis and multiplex genotyping approach. Parasitology. 126, 425–431.

  • Cordon-Obras, C., Berzosa, P., Ndong-Mabale, N., Bobuakasi, L., Buatiche, J. N., Ndong-Asumu, P. 2009.Trypanosoma brucei gambiense in domestic livestock of Kogo and Mbini foci (Equatoria Guinea). Tropical Medicine and International Health. 14 (5), 535 – 541

    Article  CAS  PubMed  Google Scholar 

  • Herrera, H.M., Aquino L. P. C. T and Menezes, R. F. 2002. Trypanosoma evansi experimental infection in the South American coati (Nasunanasua); Hematological, biochemical and histopathological changes. Acta Tropical. 81, 203–210.

    Article  CAS  Google Scholar 

  • Joshi, P. P., Shegokar, V. R., Powar, R. M., Herder, S., Katti, R., Salkar, H. R., Dani, V. S., Bhargava, A., Jannin, J., Truc, P. 2005. Human trypanosomiasis caused by Trypanosoma evansi in India: the first case report. American Journal of Tropical Medicine and Hygiene. 73, 491 – 495.

    PubMed  Google Scholar 

  • Khuchareon-taworn, S., Singhaphan, P., Viseshakul, N., Chansiri, K. 2007. Genetic diversity of Trypanosoma evansi in buffalo based on internal transcribed spacer (ITS) region. Journal of Veterinary Medical Science. 69, 487 – 493.

    Article  CAS  Google Scholar 

  • Lai, D. H., Hashimi, H., Lun, Z. R., Ayala, F. J. and Lukes, J. 2008. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proceedings National Academic of Science. 105(6), 1999–2004.

    Article  CAS  Google Scholar 

  • Li,C. H., Irmer,H., Gudjonsdottir-Planck,D., Freese,S., Salm,H., Haile,S., Estévez,A. M. and Clayton, C.E. 2006. Roles of a Trypanosoma brucei 5′ → 3′ exoribonuclease homologue in mRNA degradation. RNA. 12, 2171–2186.

  • Li, F. J., Gasser, R. B., Zheng, J. Y., Claes, F., Zhu, X. Q., Lun, Z. R. 2005. Application of multiple DNA fingerprinting techniques to study the genetic relationships among three members of the subgenus Trypanozoon (Protozoa: Trypanosomatidae). Molecular and Cellular Probes. 19, 400–7.

    Article  CAS  PubMed  Google Scholar 

  • Li, F. J., Gasser, R. B., Laia, D., Claes, F., Zhue, X., Lun, Z. 2007. PCR approach for the detection of Trypanosoma brucei and T. equiperdum and their differentiation from T. evansi based on maxicirclekinetoplast DNA. Molecular and Cellular Probes. 21 (1), 1–7

    Article  PubMed  Google Scholar 

  • Lun, Z. R., Fang, Y., Wang, C. J., Brun, R. 1993. Trypanosomiasis of domestic animals in China. Parasitology Today. 9, 41 – 5.

    Article  CAS  PubMed  Google Scholar 

  • Lun, Z. R., Li, A. X., Chen, X. G., Lu, L. X., Zhu, X. Q. 2004. Molecular profiles of Trypanosoma brucei, T. evansi and T. equiperdum stocks revealed by the random amplified polymorphic DNA method. Parasitology Research. 92, 335–40.

  • MacLeod, A., Welburn, S. C., Maudlin, I., Turner, C. M., Tait, A. 2001. Evidence for multiple origins of human infectivity in Trypanosoma brucei revealed by minisatellite variant repeat mapping. Journal of Molecular and Evolution. 52, 290–301.

    CAS  Google Scholar 

  • Masiga,D. K., Smyth,A. J., Ayes,P., Bromidge,T. J. and Gibson,W. C. 1992. Sensitive detection of trypanosomes in tsetse flies by DNA amplification. International Journal of Parasitolology, 22, 909–918.

  • Maudlin, I., Holmes, P. H., Miles, M. A. 2004. The trypanosomiases. Oxfordshire: CABI Publishing.

    Book  Google Scholar 

  • Murray,M., Murray,P.K. and McIntyre,W.I.M. 1977. An improved parasitological technique for the diagnosis of African trypanosomiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene. 71, 325–326.

  • Njiru, Z. K., Constantine, C. C., Guya, S., Crowther, K.J., Thompson, J.M. and Davila,R.C.A. 2005. The use of ITS1 rDNA PCR in detectingpathogenic African trypanosomes. Parasitology Research, 95, 186–192.

  • Rjeibi, M. R., Hamida, T. B., Dalgatova, Z., Mahjoub,T., Rejeb,A.,Dridi, M. and Gharbi, M. 2015. First report of surra (Trypanosoma evansi infection) in a Tunisiandog. Parasite. 22: 3.

  • Salim, B., Mohammed, A. B., Joseph, K., Ichiro, N and Chihiro, S. 2011. Molecular epidemiology of camel trypanosomiasis based on ITS1 rDNA and RoTat 1.2 VSG gene in the Sudan. Parasites and Vectors. 4, 31.

  • Schnaufer, A., Domingo, G. J., Stuart, K. D. 2002. Natural and induced dyskinetoplastid trypanosomatids: How to live without mitochondrial DNA. International Journal of Parasitology. 32, 1071–1084.

    Article  CAS  PubMed  Google Scholar 

  • Sloof,P., Bos,J. L., Konings,A. F. J., Menke,H. H., Borst,P., Gutteridge,W. E. and Leon,W.1983. Characterization ofsatellite DNA in Trypanosoma brucei and Trypanosoma cruzi. Journal of Molecular Biology. 167, 1–21.

  • Takeet, M. I., Fagbemi, B. O., De Donato, M., Yakubu, A., Rodulfo, H. E., Peters, S. O., Wheto, M., and Imumorin, I. G. 2013. Molecular survey of pathogenic trypanosomes in naturally infected Nigerian cattle. Research in Veterinary Science, 94 (3), 555–561.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M.and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, Z., Liu, G., Xie, J., Shen, H., Zhang, L., Zhang, P and Luo, J. 2011. The internal transcribed spacer 1 (ITS-1), a controversial marker for the genetic diversity of Trypanosoma evansi. Experimental Parasitology. 129, 303 – 306.

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov, A.E. 2003. DNA helix: The importance of being GC-rich. Nucleic Acid Research. 31, 1834–1844.

    Google Scholar 

  • Witola,W. H., Sarataphan,N., Inoue,N., Ohashi,K. and Onuma, M. 2005. Genetic variability in ESAG6 genes among Trypanosoma evansi isolates and in comparison to other Trypanozoon members. Acta Tropica. 93, 63–73.

  • Zhang, Z. Q., Baltz, T. 1994. Identification of Trypanosoma evansi, Trypanosoma equiperdum and Trypanosoma brucei brucei using repetitive DNA probes. Veterinary Parasitology. 53, 197 – 208.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael I. Takeet.

Ethics declarations

Funding

Financial support is provided by the Educational Trust Fund of the Federal Republic of Nigeria (Grant No. TETFUND-2010), and we are also thankful for the financial support by the College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, and Zoetis, Inc. Additional support by National Research Initiative Competitive Grant Program (Grant No. 2006-35205-16864) from the USDA National Institute of Food and Agriculture; USDA-NIFA Research Agreements (Nos. 2009-65205-05635, 2010-34444-20729). We also thank the entire staff of the Department of Parasitology and Entomology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria, for permission granted to use their laboratory facilities for part of this study, with special gratitude to Prof. I. A. Lawal and Dr. O.O. Okubanjo.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeet, M.I., Peters, S.O., Fagbemi, B.O. et al. Phylogeny of Trypanosoma brucei and Trypanosoma evansi in naturally infected cattle in Nigeria by analysis of repetitive and ribosomal DNA sequences. Trop Anim Health Prod 48, 1235–1240 (2016). https://doi.org/10.1007/s11250-016-1081-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-016-1081-y

Keywords

Navigation