Advertisement

Tropical Animal Health and Production

, Volume 48, Issue 4, pp 699–703 | Cite as

Lambing rate and prolificacy in inseminated hair sheep treated with bovine somatotropin

  • José Maria Carrera-Chávez
  • Joel Hernández-Cerón
  • Carlos Fernando Aréchiga-FloresEmail author
  • Marco Antonio López-Carlos
  • Raúl Renato Lozano-Domínguez
  • Andrés Quezada-Casasola
  • Francisco Guadalupe Echavarría-Cháirez
Regular Articles

Abstract

This study evaluated whether the administration of 50 and 100 mg bovine somatotropin (bST) at the start of estrous synchronization and at the time of artificial insemination improves lambing rate and prolificacy in hair sheep. Four hundred eighty adult hair ewes (Pelibuey, Blackbelly, Dorper, Katahdin, and their crosses) were synchronized with intravaginal sponge containing 40 mg of fluorogestone acetate. On the day of sponge insertion, ewes were assigned to three treatments: the bST-100 treatment (n = 156) received 100 mg bST at the start of synchronization (d 0) and at the time of insemination (d 14), the bST-50 treatment (n = 159) received 50 mg bST in the same schedule as the previous group, and the control (n = 165) did not receive any bST. Lambing rate and percentage of multiple births were analyzed using the GENMOD procedure of SAS. Prolificacy data were analyzed using the MIXED procedure of SAS. The IGF-1 and insulin concentrations were analyzed with ANOVA for repeated measures. The bST application did not affect the lambing rate (P = 0.06). The proportion of ewes with multiple births (P = 0.01) and prolificacy (P = 0.04) were higher in the bST-50 (54.3 % and 1.57 ± 0.1) than the bST-100 (18.2 % and 1.25 ± 0.1) and control (33.3 % and 1.28 ± 0.1) groups. The IGF-1 and insulin concentrations were higher (P < 0.05) in the bST-treated groups, but the insulin concentration was higher (P = 0.001) in the bST-100 group than in the bST-50 group. The administration of 50 or 100 mg bST at the start of synchronization and at the time of artificial insemination does not increase lambing rate. However, the dose of 50 mg increased the proportion of multiple births and prolificacy.

Keywords

Artificial insemination Sheep Somatotropin Lambing rate Prolificacy 

Notes

Acknowledgments

This study was partly supported by the Fundación Produce Zacatecas A.C. (Zacatecas, México) (Project number 32-2010-0013). The authors thank participating farmers and MSD Salud Animal México for the donation of somatotropin (Boostin-S) and Dr. Eugenio Villagómez Amezcua from Centro Nacional de Investigación Disciplinaria en Microbiología—Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias for his assistance in the determination of hormone levels.

Compliance with ethical standards

Statement of animal rights

All experimental procedures were conducted according to protocols approved by the Unidad Académica de Medicina Veterinaria y Zootecnia de la Universidad Autónoma de Zacatecas Animal Care and Use Committee.

Conflict of interest

The authors declare that they have no competing interests, and this document is their original research work.

References

  1. Arroyo, J., 2011. Reproductive seasonality of sheep in Mexico. Tropical and Subtropical Agroecosystems, 14, 829–845.Google Scholar
  2. Arroyo, L.J., Gallegos-Sánchez, J., Villa-Godoy, A., Berruecos, J.M., Perera, G., Valencia, J., 2007. Reproductive activity of Pelibuey and Suffolk ewes at 19 degrees north latitude. Animal Reproduction Science, 102, 24–30.CrossRefPubMedGoogle Scholar
  3. Augustin, R., Pocar, P., Wrenzycki, C., Niemann, H., Fischer, B., 2003. Mitogenic and anti-apoptotic activity of insulin on bovine embryos produced in vitro. Reproduction, 126, 91–99.CrossRefPubMedGoogle Scholar
  4. Betancourt-Alonso, M.A., Flores-Pérez, F.I., Rosas-Velasco, C., Pérez-Martínez, M., 2006. Role of cytokines in embryo implantation in domestic mammals. Veterinaria México, 37, 335–350.Google Scholar
  5. Bilby, T.R., Guzeloglu, A., Kamimura, S., Pancarci, S.M., Michel, F., Head, H.H., Thatcher, W.W., 2004. Pregnancy and bovine somatotropin in nonlactating dairy cows: I. Ovarian, conceptus, and insulin-like growth factor system responses. Journal of Animal Science, 87, 3256–3267.Google Scholar
  6. Bilby, T.R., Sozzi, A., Lopez, M.M., Silvestre, F.T., Ealy, A.D., Staples, C.R., Thatcher, W.W., 2006. Pregnancy, bovine somatotropin, and dietary n-3 fatty acids in lactating dairy cows: I. Ovarian, conceptus, and growth hormone-insulin-like growth factor system responses. Journal of Dairy Science, 89, 3360–3374.CrossRefPubMedGoogle Scholar
  7. Block, J., Rivera, M., Drost, M., Jousan, F.D., Looney, C.R., Silvestre, F.T., Paula-Lopes, F.F., Ocon, O.M., Rosson, H., Bilby, T.R., Monson, R.L., Rutledge, J.J., Hansen, P.J., 2005. Effects of bovine somatotropin and timed embryo transfer on pregnancy rates in non-lactating cattle. Veterinary Record, 156, 175–176.CrossRefPubMedGoogle Scholar
  8. Camacho, L.E., Benavidez, J.M., Hallford, D.M., 2012. Serum hormone profiles, pregnancy rates, offspring performance of Rambouillet ewes treated with recombinant bovine somatotropin before breeding. Journal of Animal Science, 90, 2826–2835.CrossRefPubMedGoogle Scholar
  9. Carrera-Chávez, J.M., Hernández-Cerón, J., López-Carlos, M.A., Lozano-Domínguez, R.R., Molinar, F., Echavarría-Cháirez, F.G., Bañuelos-Valenzuela, R., Aréchiga-Flores, C.F., 2014. Superovulatory response and embryo development in ewes treated with two dosis of bovine somatotropin. Animal Reproduction Science, 151, 105–111.Google Scholar
  10. Carrillo, F., Hernández-Cerón, J., Orozco, V., Hernández, J.A., Gutiérrez, C.G., 2007. A single dose of bovine somatotropin 5 days before the end of progestin-based estrous synchronization increase prolificacy in sheep. Animal Reproduction Science, 102, 31–37.CrossRefPubMedGoogle Scholar
  11. Cerna, C., Porras, A., Valencia, M.J., Perera, G., Zarco, L., 2000. Effect of an inverse subtropical (19 degrees 13′N) photoperiod on ovarian activity, melatonin and prolactin secretion in Pelibuey ewes. Animal Reproduction Science, 2, 511–25.CrossRefGoogle Scholar
  12. Chi, M.M-Y., Schlein, A.L., Moley, K.H., 2000. High insulin-like growth factor 1 (IGF-1) and insulin concentrations trigger apoptosis in the mouse blastocyst via down-regulation of the IGF-1 receptor. Endocrinology, 141, 4784–4792.PubMedGoogle Scholar
  13. Hernández-Cerón, J., Gutierrez-Aguilar, C.G., 2013. Recombinant bovine somatotropin and reproduction in cattle, sheep and goat. Agrociencia, 47, 35–45.Google Scholar
  14. Martínez, A.M., Gutiérrez, C.G., Domínguez, H.Y.M., Hérnandez C.J., 2011. Estrous response and pregnancy rate in seasonal anoestrous goats treated with progestogens and bovine somatropin Revista Mexicana de Ciencias Pecuarias, 2, 221–227.Google Scholar
  15. Matsui, M., Takahashi, Y., Hishinuma, M., Kanagawa, H., 1995. Insulin and insulin-like growth factor (IGF-I) stimulate the development of bovine embryos fertilized in vitro. Japanese Journal of Veterinary Research, 57, 1109–1111.Google Scholar
  16. Mejía, O., Palma-Irizarry, M., Rosas, J., Madrid-Marina, V., Valencia, M.J., Zarco, L., 2012. Administration of recombinant bovine somatotropin (rsBT) at the time of breeding in superovulated fertile and subfertile ewes. Small Ruminant Research, 102, 51–56.CrossRefGoogle Scholar
  17. Mendoza, M.G., Hernández, C.J., Zarco, Q.L.A., Gutiérrez, C.G., 2013. Conception rate in repeat-breeding Holstein cows treated with bovine somatotropin at the time of insemination. Revista Mexicana de Ciencias Pecuarias, 4, 177–183.Google Scholar
  18. Mihalik, J., Rehák, P., Koppel, J., 2000. The influence of insulin on the in vitro development of mouse and bovine embryos. Physiological Research, 49, 347–354.PubMedGoogle Scholar
  19. Montero-Pardo, A., Hernández-Céron, J., Rojas-Maya, S., Valencia, J., Rodríguez-Cortez, A., Gutiérrez, C.G., 2011. Increased cleavage and blastocyst rate in ewes treated with bovine somatotropin 5 days before the end of progestin-based estrous synchronization. Animal Reproduction Science, 125, 69–73.CrossRefPubMedGoogle Scholar
  20. Morales-Roura, J.S., Zarco, L., Hernández-Cerón, J., Rodríguez, G., 2001. Effect of short-term treatment with bovine somatotropin at estrus on conception rate and luteal function of repeat-breeding dairy cows. Theriogenology, 55, 1831–1841.CrossRefPubMedGoogle Scholar
  21. Moreira, F., Risco, R.A., Pires, M.F.A., Ambrose, J.D., Drost, M., Thatcher, W.W., 2000.Use of bovine somatotropin in lactating dairy cows receiving timed artificial insemination. Journal of Dairy Science, 83, 1237–1247.CrossRefPubMedGoogle Scholar
  22. Moreira, F., Orlandi, C., Risco, C.A., Mattos, R., Lopes, F., Thatcher, W.W., 2001. Effects of presynchronization and bovine somatotropin on pregnancy rates to a timed artificial insemination protocol in lactating dairy cows. Journal of Dairy Science, 84, 1646–1659.CrossRefPubMedGoogle Scholar
  23. Ribeiro, E.S., Bruno, R.G.S., Farias, A.M., Hernández-Rivera, J.A., Gomes, G.C., Surjus, R., Becker, L.F.V., Birt, A., Ott, T.L., Branen, J.R., Sasser, R.G., Keisler, D.H., Thatcher, W.W., Bilby, T.R., Santos, J.E.P., 2014. Low doses of bovine somatotropin enhance conceptus development and fertility in lactating dairy cows. Biology of Reproduction, 90, 1–12.CrossRefGoogle Scholar
  24. Rodríguez, O.A., Hernández C.J., Gómez, G., 2007. Efecto de la administración de somatotropina bovina al inicio del empadre con una segunda aplicación 14 días después en la fertilidad y prolificidad en ovejas. Proceedings of the XLIII Reunión Nacional de Investigación Pecuaria, Sinaloa, México, 122.Google Scholar
  25. Rooke, J.A., Ainslie, A., Watt, R.G., Alink, F.M., McEvoy, T.G., Sinclair, K.D., Garnsworthy, P.C., Webb, R., 2009. Dietary carbohydrates and amino acids influence oocyte quality in dairy heifers. Reproduction, Fertililty and Development, 21, 419–427.Google Scholar
  26. Russel, A.J.F., Doney, J.M., Gunn, R.G., 1969. Subjective assessment of body fat in live sheep. The Journal of Agricultural Science, 72, 451–454.CrossRefGoogle Scholar
  27. Santos, J.E.P., Juchem, S.O., Cerri, R.L.A., Galvao, K.N., Chebel, R.C., Thatcher, W.W., Dei, C.S., Bilby, C.R., 2004. Effect of bST and reproductive management on reproductive performance of Holstein dairy cows. Journal of Dairy Science, 87, 868–881.CrossRefPubMedGoogle Scholar
  28. Velazquez, M.A., Zaraza, J., Oropeza, A., Webb, R., Niemann, H., 2009. The role of IGF1 in the in vivo production of bovine embryos from superovulated donors. Reproduction, 137, 161–180.CrossRefPubMedGoogle Scholar
  29. Velázquez, R.L.E., Fregoso, A.C., López, O.R., Hernández, C.J., 2011. Estrous response and conception rate in postpartum Bostaurus-Bosindicuscows, treated with bovine somatotropinin an ovulation induction program with progestogens and eCG. Veterinaria México, 42(3), 245–251.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • José Maria Carrera-Chávez
    • 1
    • 2
  • Joel Hernández-Cerón
    • 3
  • Carlos Fernando Aréchiga-Flores
    • 1
    Email author
  • Marco Antonio López-Carlos
    • 1
  • Raúl Renato Lozano-Domínguez
    • 1
  • Andrés Quezada-Casasola
    • 2
  • Francisco Guadalupe Echavarría-Cháirez
    • 1
  1. 1.Unidad Académica de Medicina Veterinaria y ZootecniaUniversidad Autónoma de ZacatecasEl Cordovel Enrique EstradaMéxico
  2. 2.Departamento de Ciencias Veterinarias, Instituto de Ciencias BiomédicasUniversidad Autónoma de Ciudad JuárezCiudad JuárezMéxico
  3. 3.Facultad de Medicina Veterinaria y ZootecniaUniversidad Nacional Autónoma de MéxicoMéxico DFMéxico

Personalised recommendations