Tropical Animal Health and Production

, Volume 47, Issue 8, pp 1449–1455 | Cite as

Risk factors for Mycobacterium avium subsp. paratuberculosis (MAP) and Mycobacterium bovis coinfection at individual animal level in southern Chile cattle populations

  • Pamela Steuer
  • Eduardo Raffo
  • Gustavo Monti
  • Miguel Angel SalgadoEmail author
Regular Articles


Mycobacterium avium subsp. paratuberculosis (MAP) causes a chronic intestinal infection mainly in domestic and wild ruminants and is transmitted primarily by the fecal-oral route. Mycobacterium bovis (M. bovis) produces a chronic infection principally of the respiratory system. It affects most domestic mammals, wild species, and humans and is spread via the respiratory or oral route. It is important to note that M. bovis is considered a major zoonotic agent. The term coinfection refers to the coexistence of two or more infectious agents in the same host. The goal of the present study was to assess management factors that may favor coinfection with MAP and M. bovis in cattle at an individual level. A cross-sectional study was conducted including 366 cattle from 11 herds. Diagnostic information for both pathogens and individual characteristics of the animals and management practices applied on them was collected from each herd. The results indicated a set of variables being more frequent in the coinfected group of animals and mainly related with biosecurity measures. This study provided regionally based data that may be used to design future control plans for both cattle infections in southern Chile.


MAP M. bovis Coinfection Risk factors 



This work was supported by FIC-R-2011 and FONDECYT (11100200) grants. Pamela Steuer was the recipient of a Masters studentship from the Chilean government (CONICYT) during the present study, and this article was part of a Masters Thesis at the Universidad Austral de Chile.

Statement of animal rights

The present study was carried out in strict accordance with the recommendations in the Guide of Use of Animals for Research of Universidad Austral de Chile (

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Álvarez, J., de Juan, L., Bezos, J., Romero, B., Sáez, J.L., Marqués, S., Domínguez, C., Míringuez, O., Fernández-Mardomingo, B., Mateos, A., Domínguez, L, Aranaz, A., 2009. Effect of paratuberculosis on the diagnosis of bovine tuberculosis in a cattle herd with a mix infection using interferon-gamma detection assay. Veterinary Microbiology, 135, 389–393.CrossRefPubMedGoogle Scholar
  2. Anon, 2009. Bovine Tuberculosis. Diagnostic Techniques. OIE Manual of Diagnostic Test and Vaccines for Terrestrial Animals, 3–8.Google Scholar
  3. Cashman, W., Buckley, J., Quigley, T., Fanning, S., More, S., Egan, J., Berry, D., Grant, I., O’Farrell, K., 2008. Risk factors for the introduction and within-herd transmission of spread of Mycobacterium avium subsp. paratuberculosis (MAP) infection on 59 Irish dairy herds, Irish Veterinary Journal, 61, 464–467.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Cousins, 2001. Mycobacterium bovis infection and control in domestic livestock, Revue Scientifique et Technique de L’Office International des Epizooties, 20, 71–85.Google Scholar
  5. Cox, F.E., 2001. Concomitant infections, parasites and immune responses. Parasitology, 122, 23–38.CrossRefGoogle Scholar
  6. de la Rua-Domenech, R., Goodchild, A.T., Vordermeier, H.M., Hewinson, R.G., Christiansen, K.H., Clifton-Hadley, R.S., 2006. Ante mortem diagnosis of tuberculosis in cattle: A review of the tuberculin test, γ-interferon assay and other ancillary diagnostic techniques, Research in Veterinary Science, 81, 190–210.CrossRefPubMedGoogle Scholar
  7. Diéguez, F.J., Arnaiz, I., Sanjuán, M.L., Vilar, M.J., Yus, E., 2008. Management practices associated with Mycobacterium avium subspecies paratuberculosis infection and the effects of the infection on dairy herds, Veterinary Record, 162:19, 614–617.CrossRefPubMedGoogle Scholar
  8. Dohoo, I., Martin, W., Stryhn, H., 2010. Veterinary Epidemiologic Research, 2nd ed. (VER Inc., Charlottetown, Canada).Google Scholar
  9. Doré, E., Paré, J., Côté, G., Buczinski, S., Labrecque, O., Roy, J.P., Fecteau, G., 2012. Risk Factors Associated with Transmission of Mycobacterium avium subsp. paratuberculosis to Calves within Dairy Herd: A Systematic Review, Journal of Veterinary Internal Medicine, 26, 32–45.CrossRefPubMedGoogle Scholar
  10. Evangelista, T.R.B., De Anda, J.H., 1996. Tuberculosis in dairy calves: risk of Mycobacterium spp. exposure associated with management of colostrum and milk, Preventive Veterinary Medicine, 27, 23–27.CrossRefGoogle Scholar
  11. Godfroid, J., Boelaert, F., Heier, A., Clavareau, C., Wellemans, V., Desmecht, M., Roels, S., Walravens, K., 2000. First evidence of Johne’s disease in farmed red deer (Cervus elaphus) in Belgium, Veterinary Microbiology, 77, 283–90.CrossRefPubMedGoogle Scholar
  12. Humblet, M.F., Boschiroli, M.L., Saegerman, C., 2009. Classification of worldwide bovine tuberculosis risk factors in cattle: a stratified approach, Veterinary Research, 40:50, 1–24.Google Scholar
  13. Kennedy, A., O’Doherty, E.F., Byrne, N., O’Mahony, J., Kennedy, E.M., Sayers, R.G., 2014. A survey of management practices on Irish dairy farms with emphasis on risk factors for Johne’s disease transmission, Irish Veterinary Journal, 67 (27), 1–11.Google Scholar
  14. Kruze J., Monti, G., Schulze, F., Mella, A., Leiva S., 2013. Herd-level prevalence of Mycobacterium avium subsp. paratuberculosis infection in dairy herds of southern Chile determined by culture of enivironmental fecal samples and bilk-tank milk qPCR, Preventive Veterinary Medicine, 111 (3–4), 319–324.Google Scholar
  15. Künzler, R., Torgerson, P., Keller, S., Wittenbrink, M., Stephan, R., Knubben-Schweizer, G., Berchtold, B., Meylan, M., 2014. Observed management practices in relation to the risk of infection with paratuberculosis and to the spread of Mycobacterium avium subsp. paratuberculosis in Swiss dairy and beef herds, BMC Veterinary Research, 10 (132), 1–11.Google Scholar
  16. Lee, A., Griffiths, T.A., Parab, R.S., King, R.K., Dubinsky, M.C., Urbanski, S.J., Wrobel, I., Rioux, K.P., 2011. Association of Mycobacterium avium subspecies paratuberculosis With Crohn Disease in Pediatric Patients, Journal of Pediatric Gastroenterology and Nutrition, 52,170-174.CrossRefPubMedGoogle Scholar
  17. Lilenbaum, W., Marassi, C.D., Varges, R., Medeiros, L., Oelemann, W.M.R., Fonseca, L.S., 2009. Occurrence of false-positive results in three Paratuberculosis-ELISAs performes in a tuberculous herd, Veterinary Research Communications, 33, 693–699.CrossRefPubMedGoogle Scholar
  18. Lombard, J.E., 2011. Epidemiology and Economics of Paratuberculosis, Veterinary Clinics of North America: Food Animal Practice, 27,525–535.PubMedGoogle Scholar
  19. Manning, E.J., Collins, M.T., 2001. Mycobacterium avium subsp. paratuberculosis: pathogen, pathogenesis and diagnosis, Revue Scientifique et Technique de L’Office International des Epizooties, 20:1, 133–150.Google Scholar
  20. Max, V., Paredes, L., Rivera, A., Ternicier, C., 2011. National control and eradication program of bovine tuberculosis in Chile, Veterinary Microbiology, 151, 188–191.CrossRefPubMedGoogle Scholar
  21. Michel, A.L., Müller, B., van Helden, P., 2010. Mycobacterium bovis at the animal-human interface: A problem, or not? Veterinary Microbiology, 140, 371–381.CrossRefPubMedGoogle Scholar
  22. Morrison, W.I., Bourne, F.J., Cox, D.R., Donnelly, C.A., Gettinby, G., McInernery, J.P., Woodroffe, R., 2000. Pathogenesis and diagnosis of infections with Mycobacterium bovis in cattle, Veterinary Record, 146, 236–242.PubMedGoogle Scholar
  23. Murphy, D., Gormley, E., Costello, E., O’ Meara, D., Corner, L.A., 2010. The prevalence and distribution of Mycobacterium bovis infection in European badgers (Meles meles) as determined by enhanced post mortem examination and bacteriological culture. Research in Veterinary Science, 88, 1–5.CrossRefPubMedGoogle Scholar
  24. Rabe-Hesketh, S., Skondral, A., 2005. Multilevel and Longitudinal Modeling using Stata. Stata Press, Tx, USA.Google Scholar
  25. Salgado, M., Manning, E., Monti, G., Bölske, G., Söderlund, R., Ruiz, M., Paredes, E., Leiva, S., Van Kruningen, H., Kruze, J., 2011. European Hares in Chile: A Different Lagomorph Reservoir for Mycobacterium avium subsp. paratuberculosis?, Journal of Wildlife Diseases, 47:3, 734–738.CrossRefPubMedGoogle Scholar
  26. Salgado, M., Alfaro, M., Salazar, F., Troncoso, E., Mitchell, R.M., Ramirez, L., Naguil, A., Zamorano, P., Collins, M.T., 2013. Effect of soil slope on appearance of Mycobacterium avium subsp. paratuberculosis in water running off grassland soil after contaminated slurry application. Applied Environmental Microbiology, 79, 44–3552.CrossRefGoogle Scholar
  27. Salgado, M., Verdugo, C., Heuer, C., Castillo, P., Zamorano, P., 2014. A novel low cost method for Mycobacterium avium subsp. paratuberculosis DNA extraction from an automated broth culture system for real time PCR confirmation. Journal of Veterinary Science, 15, 233–239.PubMedCentralCrossRefPubMedGoogle Scholar
  28. Seva, J., Sanes, J.M., Ramis, G., Mas, A., Quereda, J.J., Villareal-Ramos, B., Villar, D., Pallares, F.J., 2014. Evaluation of the single cervical skin test and interferon gamma responses to detect Mycobacterium bovis infected cattle in a herd co-infected with Mycobacterium avium subsp. paratuberculosis, Veterinary Microbiology, 171, 139–146.CrossRefPubMedGoogle Scholar
  29. Sibley, R., 2010. Biosecurity in the dairy herd, In Practice, 32, 274–280.CrossRefGoogle Scholar
  30. Streeter, R.N., Hoffsis, G.F., Bech-Nielsen, S., Schulaw, W.P., Rings, D.M., 1995. Isolation of Mycobacterium paratuberculosis from colostrum and milk of subclinically infected cows, American Journal of Veterinary Research, 56:10, 1322–1324.PubMedGoogle Scholar
  31. van Soolingen, D., Hermans, P.W.M., de Haas, P.E.W., Sool, D.R., van Embden, J.D.A., 1991. The occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. Clinical Microbiology, 29, 2578–2586.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Pamela Steuer
    • 1
    • 2
  • Eduardo Raffo
    • 1
    • 2
  • Gustavo Monti
    • 3
  • Miguel Angel Salgado
    • 1
    Email author
  1. 1.Biochemistry and Microbiology Department, Faculty of SciencesUniversidad Austral de ChileValdiviaChile
  2. 2.Graduate School, Faculty of Veterinary SciencesUniversidad Austral de ChileValdiviaChile
  3. 3.Preventive Veterinary Medicine Department, Faculty of Veterinary SciencesUniversidad Austral de ChileValdiviaChile

Personalised recommendations