Skip to main content
Log in

Residual feed intake: a nutritional tool for genetic improvement

  • Reviews
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

The goal of this bibliographical study was to provide information about residual feed intake (RFI), a new criterion used in the selection of beef cattle for growth rate, food ingestion, and feed efficiency. RFI is calculated as the difference between real consumption and the quantity of food an animal is expected to eat based on its mean live weight and rate of weight gain. In studies of RFI, many speculations are made among researchers about the reliability of this criterion. However, there is a high genetic correlation with characteristics related to post-weaning consumption and maturity, indicating that the biological processes that regulate consumption and efficiency in young animals are similar to the processes that regulate consumption and efficiency in animals of greater age. In contrast to feed conversion, selection based on RFI seems to select for lower rates of consumption and lower animal maintenance requirements without changing adult weight or weight gain. Therefore, we conclude that the data indicate that there are extraordinary benefits to be gained from changing the goals of selection from increased weight gain to improved nutritional efficiency. Given the importance of animal production for economic development in Brazil choosing the best selection goals for livestock improvement is essential. To include an index of feed efficiency in future goals would be desirable, and RFI may play a part in this if economic methods of implementation can be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida, R. 2005. Consumo e eficiência alimentar de bovinos em crescimento. 2005. Tese (Doutorado)—Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba.

    Google Scholar 

  • Araujo, C. V. 2000. Efeito da interação reprodutor-rebanho sobre a produção de leite na raça holandesa. Viçosa, MG: Universidade Federal de Viçosa, 2000. 80p. Tese (Mestrado em Zootecnia)—Universidade Federal de Viçosa.

  • Archer, J.A. and Pitchford, W.S. 1996. Phenotypic variation in residual food intake of mice at different ages and its relationship with efficiency of growth, maintenance and body composition. Animal Science, 63 (01), 149–157.

    Google Scholar 

  • Archer, J.A., Arthur, P.F., Herd, R.M., Parnell, P.F. and Pitchford, W.S. 1997. Optimum postweaning test for measurement of growth rate, feed intake, and feed efficiency in British breed cattle. Journal of Animal Science, 75, 2024–2032.

    PubMed  CAS  Google Scholar 

  • Archer, J.A., Pitchford, W.S., Hughes, T.E. and Parnell, P.F. 1998. Genetic and phenotypic relationships between feed intake, growth, efficiency and body composition of mice post-weaning and at maturity. Animal Science, 67, 171–82.

    Article  Google Scholar 

  • Archer, J.A., Arthur, P.F., Herd, R.M., Richardson, E.C. and Burton, D.A. 1999a. Potential for reducing the length of net feed intake test by weighing cattle more frequently. In: Proc. 13th Conf. Assoc. Advmt. Anim. Breed. Genet., Mandurah, Australia, 247–249.

    Google Scholar 

  • Archer, J.A., Richardson, E.C., Herd, R.M. and Arthur, P.F. 1999b. Potential for selection to improve efficiency of feed use in beef cattle: A review. Australian Journal of Experimental Agriculture, 50, 147–161.

    Article  Google Scholar 

  • Archer, J.A. and Bergh, L. 2000. Duration of performance tests for growth rate, feed intake and feed efficiency in four biological types of beef cattle. Livestock Production Science, 65:47–55.

    Article  Google Scholar 

  • Archer, J.A., Reverter, A. Herd, R.M., Johnston, D.J. and Arthur, P.F. 2002. Genetic variation in feed intake and efficiency of mature beef cows and relationships with postweaning measurements. In: Proc. 7th World Congr. Genet. Appl. Livest. Prod., Montpellier, France. comm. no. 10–07.

  • Arthur, P.F., Archer, J.A., Herd, R.M. and Richardson, E.C. 1999. Relationship between postweaning growth, net feed intake and cow performance. In: Proc. 13th Conf. Assoc. Advancement Animal Breed Genetic, Mandurah, Australia, 484–487.

    Google Scholar 

  • Arthur, P.F., Archer, J.A., Herd, R.M. and Melville, G.J. 2001a. Response to selection for net feed intake in beef cattle. In: Proc. 14th Conf. Assoc. Advancement Anim. Breed. Genet., Queenstown, New Zealand, p.135–138.

  • Arthur, P.F., Archer, J.A., Johnston, D.J., Herd, R.M., Richardson, E.C. and Parnell, P.F. 2001b. Genetic and phenotypic variance and covariance components for feed intake, feed efficiency and other postweaning traits in Angus cattle. Journal of Animal Science, 79, 2805–2811.

    PubMed  CAS  Google Scholar 

  • Arthur, P.F., Renand, G. and Krauss, D. 2001c. Genetic parameters for growth and feed efficiency in weaner versus yearling Charolais bulls. Australian Journal of Experimental Agriculture, 52, 471–476.

    Article  Google Scholar 

  • Baker, S.D., Szasz, J.I., Klein, T.A., Kuber, P.S., Hunt, C.W., Glaze, J.B., Falk, D., Richard, R., Miller, J.C., Battaglia, R.A. and Hill, R.A. 2006. Residual feed intake of purebred Angus steers: Effects on meat quality and palatability. Journal of Animal Science, 84, 938–945.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, R.L. and Sainz, R.D. 1995. Energy Partitioning and Modeling in Animal Nutrition. Annual Review of Nutrition, 15, 191–211.

    Google Scholar 

  • Balieiro, J.C.C. Heterogeneidade de variância na avaliação genética de bovinos da raça Nelore. Viçosa: Universidade Federal de Viçosa, 2001. 88p. Tese (Doutorado em Genética e Melhoramento)—Universidade Federal de Viçosa, 2001.

  • Barea, R., Dubois, S., Gilbert, H., Sellier, P., Van Milgen, J. and Noblet, J. 2010. Energy utilization in pigs selected for high and low residual feed intake. J. Anim. Sci., 88:2062–2072.

    Article  PubMed  CAS  Google Scholar 

  • Barwick, S.A., Wolcott, M.L, Johnston, D.J., Burrow, H.M., and Sullivan, M.T. 2009. Genetics of steer daily and residual feed intake in two tropical beef genotypes, and relationships among intake, body composition, growth and other post-weaning measures. Animal Production Science, 49, 351–366.

    Article  CAS  Google Scholar 

  • Basarab, J.A., Price, M.A., Aalhus, J.L., Okine, E.K., Snelling, W.M. and Lyle, K.L. 2001. Net feed intake in beef cattle. In: National Beef Science Seminar. In Advances in Beef Cattle Science. v.1. K. A. Beauchemin and D. H. Crews, ed. Agriculture and Agri-Food Canada, Lethbridge, Canada, 120–133.

    Google Scholar 

  • Basarab, J. A., Price, M. A., Aalhus, J. L., Okine, E. K., Snelling, W. M. and Lyle, K. L. 2003. Residual feed intake and body composition in young growing cattle. Canadian Journal Animal Science, 83, 189–204.

    Article  Google Scholar 

  • Basarab, J. A, Colazo, M. G., Ambrose, D. J., Novak, S., McCartney, D. and Baron, V. S. 2011. Residual feed intake adjusted for backfat thickness and feeding frequency is independent of fertility in beef heifers. Canadian Journal Animal Science, 91, 573–584.

    Article  Google Scholar 

  • Bezerra, L.R., Ferreira, A.F, Camboim, E.K.A, Justiniano, S.V., Machado, P.C.R., Gomes, B.B. 2008. Profile hematological of goat clinical healthy servants in Cariri paraibano. Ciência e agrotecnologia, Lavras, 32(3), 955–960.

    Article  Google Scholar 

  • Bouquet, A., Fouilloux, M.-N., Renand, G. and Phocas, F. 2010. Genetic parameters for growth, muscularity, feed efficiency and carcass traits of young beef bulls. Livestock Production Science, 129, 38–48.

    Article  Google Scholar 

  • Byerly, T. C. 1941. Feed and other costs of producing market eggs. Tech. Bull. n.1. The University of Maryland Agric. Exp., College Park, Maryland.

  • Carberry, C.A., Kenny, D.A., Han, S., McCabe, M.S. and Waters, S.M. 2012. Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle. Applied Environmental Microbiology, 78 (14), 4949–4958.

    Article  PubMed  CAS  Google Scholar 

  • Carstens, G. E., Theis, C. M., White, M. B., Welsh Jr., T. H., Warrington, B. G., Randel, R. D., Forbes, T. D. A., Lippke, H., Greene, L. W. and. Lunt, D. K. 2002. Relationships between net feed intake and ultrasound measures of carcass composition in growing beef steers. Beef Cattle Research in Texas, 31–34.

  • Channon, A. F., Rowe, J.B. and Herd, R.M. 2004. Genetic variation in starch digestion in feedlot cattle and its association with residual feed intake. Australian Journal of Experimental Agriculture, Collingwood, 44, 469–474.

    Article  Google Scholar 

  • CRC. 2001. Breeding feed efficient cattle. Sponsors Report n. 10. Co-operative Research Centre for Cattle and Beef Quality, Armidale, NSW.

  • CRC. 2004. For Beef Genetic Technologies Prospectus. Cooperative Research Centre for Cattle and Beef Quality. Armidale, Australia: 16p.

  • Crews Junior, D.H., Shannon, N.H., Genswein, B.M.A., Crews, R.E., Johnson, C.M. and Kendrick, B.A. 2003. Genetic parameters for net feed efficiency of beef cattle measured during postweaning growing versus finishing periods. Proceedings, Western Section, American Society of Animal Science, 54.

  • Crews Junior, D.H., Pendley, C.T., Carsten, G.E. and Mendes, E.D.M. 2010. Genetic evaluation of feed intake and utilization traits of beef bulls. In: WORLD CONGRESS ON GENETICS APPLIED TO LIVESTOCK PRODUCTION, 9., 2010. Proceedings. Leipzig: WCGALP, 4p.

  • Crowley, J.J., Mcgee, M., Kenny, D.A., Crews Junior, D.H., Evans, R.D. and Berry, D.P. 2010. Phenotypic and genetic parameters for different measures of feed efficiency in different breeds of Irish performance-tested beef bulls. Journal of Animal Science, 88:885–894.

    Article  PubMed  CAS  Google Scholar 

  • Cruz, G. D., Rodriguez-Sanchez, J. A., Oltjen, J.W. and Sainz, R. D. 2010. Performance, residual feed intake, digestibility, carcass traits, and profitability of Angus-Hereford steers housed in individual or group pens. Journal Animal Science, 88:324–329.

    Article  CAS  Google Scholar 

  • Del Claro, A. C., Mercadante, M. E. Z. and Silva, J. A. V. 2012. Meta-análise de parâmetros genéticos relacionados ao consumo alimentar residual e a suas características componentes em bovinos, Pesquisa Agropecuária Brasileira, 47(2), 302–310.

    Article  Google Scholar 

  • Durunna, O. N., Mujibi, F. D. N., Goonewardene, L., Okine, E. K., Basarab, J.A., Wang, Z. and Moore, S. S. 2011a. Feed efficiency differences and reranking in beef steers fed grower and finisher diets. Journal Animal Science, 89, 158–167.

    Article  CAS  Google Scholar 

  • Durunna, O. N., Wang, Z., Basarab, J. A., Okine, E. K. and Moore, S. S. 2011b. Phenotypic and genetic relationships among feeding behavior traits, feed intake, and residual feed intake in steers fed grower and finisher diets. Journal Animal Science, 89, 3401–3409.

    Article  CAS  Google Scholar 

  • Durunna, O. N., Colazo, M. G., Ambrose, D. J., McCartney, D., Baron, V. S. and Basarab, J. A. 2012. Evidence of residual feed intake reranking in crossbred replacement heifers. Journal Animal Science, 90, 734–741.

    Article  CAS  Google Scholar 

  • Exton, S. 2001. Testing beef cattle for net feed efficiency—Standards manual. Performance Beef Breeders Association, Armidale, NSW.

    Google Scholar 

  • Exton, S.C., Herd, R.M. and Arthur, P.F. 2004. Identifying bulls superior for net feed intake, intramuscular fat and subcutaneous fat. Animal Production in Australia, Collingwood, 25, 57–60.

    Google Scholar 

  • Fan, B., Lkhagvadorj, S., Cai, W., Young, J., Smith, R. M., Dekkers, J. C. M., Huff-Lonergan, E., Lonergan, S. M. and Rothschild, M. F. 2010. Identification of genetic markers associated with residual feed intake and meat quality traits in the pig. Meat Science, 84, 645–650.

    Article  PubMed  CAS  Google Scholar 

  • Ferrell, C.L. and Jenkins, T.G. 1985. Cow type and nutritional environment: nutritional aspects. Journal of Animal Science, 61, 725–741 .

    PubMed  CAS  Google Scholar 

  • Ferrell, C.L. and Jenkins, T.G. 1998. Body composition and energy utilization by steers of diverse genotypes fed a high-concentrate diet during the finishing period: I. Angus, Belgian Blue, Hereford, and Piedmontese sires. Journal of Animal Science, 76, 637–646

    Google Scholar 

  • Geay, Y. and Micol, D. 1988. Alimentation des bovins en croissance et àl’engrais. In: Jarrige, R. (Ed.). Alimentation des bovins, ovins and caprins. Paris: INRA, 213–247.

  • Gilbert, H., Bidanel, J.P., Gruand, J., Caritez, J.C., Billon, Y., Guillouet, P., Lagant, H., Noblet, J. and Sellier, P. 2007. Genetic parameters for residual feed intake in growing pigs, with emphasis on genetic relationships with carcass and meat quality traits. Journal of Animal Science, 85, 3182–3188.

    Article  PubMed  CAS  Google Scholar 

  • Gomes, R.C. 2009. Metabolismo protéico, composição corporal, características de carcaça e qualidade de carne de novilhos Nelore (Bos indicus) em função de seu consumo alimentar residual. 2009. Tese (Doutorado)—Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga.

    Google Scholar 

  • Graham, J.F., Knee, B.K., Clark, A.J. and Kearney, G. 1999. The potential to shorten the feeding period when measuring the net feed conversion efficiency of cattle using an automated feeding and animal weighing system. In: Proc. 13th Conf. Assoc. Advancement Animal Breed. Genetic, Mandurah, Australia, 488–491.

    Google Scholar 

  • Hafla, A.N., Lancaster, P.A., Carstens, G.E., Forrest, D.W., Fox, J.T., Forbes, T.D.A., Davis, M.E., Randel, R.D. and Holloway, J.W. 2012. Relationships between feed efficiency, scrotal circumference, and semen quality traits in yearling bulls. Journal Animal Science, 90(11), 3937–3944.

    Google Scholar 

  • Hawkins, A.J.S. 1991. Protein turnover: a functional appraisal. Functional Ecology, 5(2), 222–233.

    Google Scholar 

  • Herd, R.M. and Bishop, S.C. 2000. Genetic variation in residual feed intake and its association with other production traits in British Hereford cattle. Livestock Production Science, 63, 111–119.

    Article  Google Scholar 

  • Herd, R. M., J.A. Archer and P.F. Arthur. 2003. Reducing the cost of beef production through genetic improvement in residual feed intake: Opportunity and challenges to application. Journal of Animal Science, 81:9–17.

    Google Scholar 

  • Herd, R.M., Oddy, V.W. and Richardson, E.C. 2004. Biological basis for variation in residual feed intake in beef cattle. 1. Review of potential mechanisms. Australian Journal of Experimental Agriculture, Collingwood, 25, 93–96.

    Google Scholar 

  • Herd, R. M. and Arthur, P. F. 2009. Physiological basis for residual feed intake. Journal of Animal Science, 87:64–71.

    Article  Google Scholar 

  • Hoque, M.A., Arthur, P.F., Hiramoto, K. and Oikawa, T. 2006. Genetic relationship between different measures of feed efficiency and its component traits in Japanese black (Wagyu) bulls. Livestock Production Science, 99, 111–118.

    Article  Google Scholar 

  • Hoque, M.A., Hosono, M., Oikawa, T. and Suzuki, K. 2009. Genetic parameters for measures of energetic efficiency of bulls and their relationships with carcass traits of field progeny in Japanese Black cattle. Journal of Animal Science, 87, 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Inoue K., Kobayashi, M., Shoji, N. and Kato, K. 2011. Genetic parameters for fatty acid composition and feed efficiency traits in Japanese Black cattle. Animal, 5, 987–994.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, J., Mao, I.L., Andersen, B. and Madsen, P. 1992. Phenotypic and genetic relationships between residual energy intake and growth, feed intake, and carcass traits of young bulls. Journal of Animal Science,70, 386.

    Google Scholar 

  • Johnston, D. J., Herd, R. M., Kadel, M. J., Graser, H. U., Arthur, P. F. and Archer, J. A. 2002. Evidence of IGF-I as a genetic predictor of feed efficiency traits in beef cattle. In: In: WORLD CONGRESS ON GENETICS APPLIED TO LIVESTOCK PRODUCTION, 7., 2002, Montpellier, France. Proceedings… Montpellier, France, CD ROM.

  • Jones, F. M., Phillips, F. A., Naylor, T. and Mercer, N. B. 2011. Methane emissions from grazing Angus beef cows selected for divergent residual feed intake. Animal Feed Science and Technology, 302–307.

  • Kelly, A. K., Waters, S. M., McGee, M., Browne, J. A., Magee, D. A. and Kenny, D. A. 2012. Expression of key genes of the somatotropic axis in longissimus dorsi muscle of beef heifers phenotypically divergent for residual feed intake. Journal of Animal Science, 91, 159–167.

    Article  PubMed  Google Scholar 

  • Kelly, A. K., McGee, M., Crews Jr., D. H., Fahey, A. G., Wylie, A. R. and Kenny, D. A. 2010. Effect of divergence in residual feed intake on feeding behavior, blood metabolic variables, and body composition traits in growing beef heifers. Journal of Animal Science, 88, 109–123.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, B.W., Van der Werf, J.H.J. and Meuwissen, T.H.E. 1993. Genetic and statistical properties of residual feed intake. Journal of Animal Science, 71, 3239–50.

    PubMed  CAS  Google Scholar 

  • Koch, R.M., Swiger, L.A., Chambers D. and Gregory, K.E. 1963. Efficiency of feed use in beef cattle. Journal of Animal Science, 22, 486–494.

    Google Scholar 

  • Kolath, W. H., Kerley, M. S., Golden, J. W. and Keisler, D. H. 2006. The relationship between mitochondrial function and residual feed intake in Angus steers. Journal Animal Science, 84, 861–865.

    Article  CAS  Google Scholar 

  • Korver, S., Van Eekelen, E.A.M., Vos, H., Nieuwhof, G.J. and Van Arendonk, J.A.M. 1991. Genetic parameters for feed intake and feed efficiency in growing dairy heifers. Livestock Production Science, 20, 49.

    Article  Google Scholar 

  • Lancaster, P.A., Carstens, G.E., Crews Junior, D.H., Welsh Junior, T.H., Forbes, T.D.A., Forrest, D.W., Tedeschi, L.O., Randel, R.D. and Rouquette, F.M. 2009. Phenotypic and genetic relationship of residual feed intake with performance and ultrasound carcass traits in Brangus heifers. Journal of Animal Science, 87, 3887–3896.

    Article  PubMed  CAS  Google Scholar 

  • Lanna, D.P.D. and Almeida, R. 2004. Residual Feed Intake: Um novo critério de seleção In: SIMPOSIO DA SOCIEDADE BRASILEIRA DE MELHORAMENTO ANIMAL, 5., 2004, Pirassununga. Anais… Pirassununga: SBMA, p.12.

  • Larzul, C. and Rochambeau, H. 2005. Selection for residual feed consumption in the rabbit. Livestock Production Science, 95(1–2), 67–72.

    Google Scholar 

  • Luiting, P., and Urff, E. M. 1991. Residual feed consumption in laying hens. 2. Genetic variation and correlations. Poultry Science, 70:1663.

    Google Scholar 

  • Luiting, P., J.W. Schrama, W. Van Der Hel and E.M. Urff. 1991. Metabolic differences between White Leghorns selected for high and low residual food consumption. Brazilian Journal of Poultry Science, 32, 763–782.

    Article  CAS  Google Scholar 

  • Mercadante, M.E.Z., Del Claro, A.C., Bonilha, S.F.M., Cyrillo, J.N.S.G. and Branco, R.H. 2011. Additive genetic variation of residual feed intake and its components in Nellore cattle. Journal of Animal Science, 89, 1.

    Article  Google Scholar 

  • Ministério of Agriculture, Pecuária e Abastecimento. Assessoria de Gestão Estratégica. Brasil Projeções do agronegócio: 2010/2011 a 2020/2021. Brasília, 2011.

  • Moore, S., Crews, D.H. and Nkrumah, D. 2006. Multiple and candidate gene approaches to genetic evaluation of feed efficiency in beef cattle. In: WORLD CONGRESS ON GENETICS APPLIED TO LIVESTOCK PRODUCTION, 8, 2006, Belo Horizonte. Palestras… Belo Horizonte.

  • Mrode, R.A., and Kennedy, B.W. 1993. Genetic variation in measures of food efficiency in pigs and their genetic relationships with growth rate and backfat. Animal Production, 56, 225.

    Article  Google Scholar 

  • Mujibi, F. D. N., Nkrumah, J. D., Durunna, O. N., Stothard, P., Mah, J., Wang, Z., Basarab, J., Plastow, G., Crews Jr., D. H. and Moore, S. S. 2011. Accuracy of genomic breeding values for residual feed intake in crossbred beef cattle. Journal Animal Science, 89, 3353–3361.

    Article  CAS  Google Scholar 

  • Naou, T.L., Floc’h, N.L., Louveau, I., Gilbert, H. and Gondret, F. 2012. Metabolic changes and tissue responses to selection on residual feed intake in growing pigs. Journal Animal Science, 90, (13), 4771–4780.

    Article  Google Scholar 

  • Ngwerume, F. and Mao, I.L. 1992. Estimation of residual energy intake for lactating cows using an animal model. Journal of Dairy Science, 75, 2283.

    Article  PubMed  CAS  Google Scholar 

  • Nkrumah, J. D., Li, C., Yu, J., Hansen, C., Keisler, D. H. and Moore, S. S. 2005. Polymorphisms in the bovine leptin promoter associated with serum leptin concentration, growth, feed intake, feeding behavior, and measures of carcass merit. Journal of Animal Science, 83, 20–28.

    PubMed  CAS  Google Scholar 

  • Nkrumah, J.D., Okine, E.K., Mathison, G.W., Schmid, K., Li, C., Basarab, J.A., Price, M.A., Wang, Z. and Moore, S. S. 2006. Relationships of feedlot feed efficiecy, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. Journal of Animal Science, 84, 145–153.

    PubMed  CAS  Google Scholar 

  • Nkrumah, J.D., Sherman, E.L., LI, C., Marques, E., Crews, D.H., Bartusiak, R., Murdoch, B., Wang, Z., Basarab, J.A. and Moore, S.S. 2007. Primary genome scan to identify putative quantitative trait loci for feedlot growth rate, feed intake, and feed efficiency of beef cattle. Journal of Animal Science, 85, 3170–3181.

    Article  PubMed  CAS  Google Scholar 

  • NRC. 2001. Nutrient Requirements of Dairy Cattle. Natl. Acad. Press, Washington, DC.

  • Okine, E.K., Wang, Z., Goonewardene, L.A., Mir, Z. and Liu, M.F. 2001. Residual metabolizable feed consumption as a method of comparing feed efficiency in steers fed silage and silage-grain diets. Animal Feed Science Technology, 92, 87–93.

    Article  Google Scholar 

  • Paulino, P.V.R., Castro, F.C., Magnabosco, A.C.S., and Sainz, R.D. 2004. Performance and residual feed intake differences between steers housed in individual or group pens. Journal of Animal Science, Champaign, 82 (Suppl. 1):43.

    Google Scholar 

  • Renand, G., Vinet, A. and Krauss, D. Genetic relationship between residual feed intake of growing bulls and adult cows. 2010. In: WORLD CONGRESS ON GENETICS APPLIED TO LIVESTOCK PRODUCTION, 9., 2010, Leipzig. Proceedings. Leipzig: WCGALP, 4p

  • Ribeiro, F. R. B., Carstens, G. E., Miller R. K., Brown, E. G. and Lancaster, P. A. 2007. Relationships of feed efficiency with carcass and non-carcass tissue composition in Angus bulls and heifers. Beef Cattle Research in Texas, College Station, p.121–124.

  • Richardson, E.C., Herd, R.M., Archer, J.A., Woodgate, R.T. and Arthur, P.F. 1998. Steers bred for improved net feed efficiency eat less for the same feedlot performance. Animal Production Australian, 22:213–216.

    Google Scholar 

  • Richardson, E. C., Herd, R. M., Oddy, V. H., Thompson, J. M., Archer, J. A. and Arthur, P. F. 2001. Body composition and implications for heat production of Angus steer progeny of parents selected for and against residual feed intake. Australian Journal of Experimental Agricriculture, 41, 1065–1072.

    Article  Google Scholar 

  • Richardson, E.C. and Herd, R.M. 2004. Biological basis for variation in residual feed intake in beef gattle. 2. Synthesis of results following divergent selection. Australian Journal of Experimental Agriculture, Collingwood, 44, 431–440.

    Article  Google Scholar 

  • Robinson D.L. and Oddy V.H. 2004. Genetic parameters for feed efficiency, fatness, muscle area and feeding behaviour of feedlot finished beef cattle. Livestock Production Science, 90, 255–70.

    Google Scholar 

  • Roca, R.O. 2011. Propriedades da carne [Meat characteristics]. Retrieved 06.02.2009.: Faculdade de Ciências agronômicas—UNESP.

  • Rolfe, K.M., Snelling, W.M., Nielsen, M.K., Freetly, H.C., Ferrel, C.L. and Jenkins, T.G. 2011. Genetic and phenotypic parameter estimates for feed intake and other traits in growing beef cattle, and opportunities for selection. Journal of Animal Science, 89, 452–3459.

    Article  Google Scholar 

  • Rutherford, W.C., Kriese-Anderson, L.A. and Hecht, G.S. 2010. Heritability and genetic correlations of residual feed intake between Angus and Simmental bulls and resulting steer relatives. Journal of Dairy Science, 93(1), 184–185.

    Google Scholar 

  • Schenkel, F.S., Miller, S.P. and Wilton, J.W. 2004. Genetic parameters and breed differences for feed efficiency, growth, and body composition traits of young beef bulls. Canadian Journal of Animal Science, 84, 177–185.

    Article  Google Scholar 

  • Sherman, E.L. 2008a. Identification of polymorphisms influencing feed intake and efficiency in beef cattle. Animal Genetics, Oxon, 39, 225–231.

    Article  CAS  Google Scholar 

  • Sherman, E.L. 2008b. Polymorphisms and haplotypes in the bovine neuropeptide Y, growth hormone receptor, ghrelin, insulin-like growth factor 2, and uncoupling proteins 2 and 3 genes and their associations with measures of growth, performance, feed efficiency, and carcass merit in beef cattle. Journal of Animal Science, Savoy, 86, 1–16.

    Article  CAS  Google Scholar 

  • Snowder, G.D. and Van Vleck, L.D. 2003. Estimates of genetic parameters and selection strategies to improve the economic efficiency of postweaning growth in lambs. Journal Animal Science, 81(11), 2704–2713.

    Google Scholar 

  • Standing Committee on Agriculture. Ruminants Subcommittee. 1990. Feeding standards for Australian livestock ruminants. Victoria, CSIRO: 226p.

  • Tatham, B.G., Davis, J.J. and Ferrier, G.R. 2000. Commercial application of net feed intake assessment, biochemical relationships and economic implications of using tested Angus bulls. Asian-Australian Journal Animal Science, 13 (A), 327–330.

    Google Scholar 

  • Van Arendonk, J.A.M., Niewhof, G.J., Vos, H. and Korver, S. 1991. Genetic aspects of feed intake and efficiency in lactating dairy heifers. Livestock Production Science, 29, 263.

    Article  Google Scholar 

  • Wang, Z., Colazo, M.G., Basarab, J.A., Goonewardene, L.A., Ambrose, D.J., Marques, E., Plastow, G., Miller, S.P. and Moore, S.S. 2012. Impact of selection for residual feed intake on breeding soundness and reproductive performance of bulls on pasture-based multisire mating. Journal Animal Science, 90, 2963–2969.

    Article  CAS  Google Scholar 

  • Zamani, P., Miraei-Ashtiani, S.R. and Mohammadi, H. 2008. Genetic parameters of residual energy intake and its correlations with other traits in Holstein dairy cattle. Turkish Journal of Veterinary and Animal Sciences, 32, 255–261.

    Google Scholar 

  • Zorzi, K., Bonilha, S. F. M., Queiroz, A. C., Branco, R. H., Sobrinho, T. L. and Duarte, M. S. 2013. Meat quality of young Nellore bulls with low and high residual feed intake. Meat Science, 93, 593–599.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leilson Rocha Bezerra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezerra, L.R., Sarmento, J.L.R., Neto, S.G. et al. Residual feed intake: a nutritional tool for genetic improvement. Trop Anim Health Prod 45, 1649–1661 (2013). https://doi.org/10.1007/s11250-013-0435-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-013-0435-y

Keywords

Navigation