Advertisement

Tropical Animal Health and Production

, Volume 44, Issue 7, pp 1335–1339 | Cite as

RT-PCR test for detecting porcine sapovirus in weanling piglets in Hunan Province, China

  • Guo-Hua Liu
  • Run-Cheng Li
  • Ze-Bin Huang
  • Jun Yang
  • Chao-Ting Xiao
  • Jing Li
  • Man-Xiang Li
  • Yun-Qiu Yan
  • Xing-Long YuEmail author
Brief Communication

Abstract

The prevalence of porcine sapovirus infection in weanling pigs was investigated in Hunan Province, China, between August 2006 and October 2007. A total of 153 diarrheic fecal samples from ten intensive pig farms from ten representative administrative regions in Hunan province were examined for porcine sapoviruses using RT-PCR. Twenty-two of 153 (14.37 %) samples were found to contain porcine sapoviruses. Phylogenetic analysis showed that all the porcine sapovirus isolates in Hunan Province belonged to the porcine sapovirus genogroup III. The results of the present investigation have implications for the control of porcine sapovirus infection in pigs in Hunan Province, China.

Keywords

Porcine sapovirus Prevalence Swine RT-PCR Phylogenetic analysis Hunan province China 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (project no. 30571390) and the Science and Technology Foundation of Hunan Province (grant no. 2007FJ1003).

References

  1. Alcalá, A.C., Rodríguez-Díaz, J., de Rolo, M., Vizzi, E., Buesa, J., Liprandi, F. and Ludert, J.E., 2010. Seroepidemiology of porcine enteric sapovirus in pig farms in Venezuela. Veterinary Immunology and Immunopathology, 137, 269–274.PubMedCrossRefGoogle Scholar
  2. Anderson, E.J., 2010. Prevention and treatment of viral diarrhea in pediatrics. Expert Review of Anti-infective Therapy, 8, 205–217.PubMedCrossRefGoogle Scholar
  3. Collins, P.J., Martella, V., Buonavoglia, C. and O'Shea, H., 2009. Detection and characterization of porcine sapoviruses from asymptomatic animals in Irish farms. Veterinary Microbiology, 139, 176–182.PubMedCrossRefGoogle Scholar
  4. Cunha, J.B., de Mendonça, M.C., Miagostovich, M.P. and Leite, J.P., 2010. Genetic diversity of porcine enteric caliciviruses in pigs raised in Rio de Janeiro State, Brazil. Archives Virology, 155, 1301–1305.PubMedCrossRefGoogle Scholar
  5. Flynn, W.T., Saif, L.J., Moorhead, P.D., 1988. Pathogenesis of porcine enteric calicivirus-like virus in four-day-old gnotobiotic pigs. American Journal of Veterinary Research, 1988, 49, 819–825.Google Scholar
  6. Guindon, S. and Gascuel, O., 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systems Biology, 52, 696–704.CrossRefGoogle Scholar
  7. Guo, M., Hayes, J., Cho, K.O., Parwani, A.V., Lucas, L.M., Saif, L.J., 2001. Comparative pathogenesis of tissue culture-adapted and wild-type Cowden porcine enteric calicivirus (PEC) in gnotobiotic pigs and induction of diarrhea by intravenous inoculation of wild-type PEC. Journay of Virology, 75: 9239–9251.PubMedCrossRefGoogle Scholar
  8. Jin, M., Yu, J.M., Li, H.Y., Zang, Q. and Cui, S.X., 2010. Genetic Diversity of Porcine Sapoviruses from Lulong County in China. Chinese Journal Virology, 26, 255–259 (in Chinese).Google Scholar
  9. Keum, H.O., Moon, H.J., Park, S.J., Kim, H.K., Rho, S.M. and Park, B.K., 2009. Porcine noroviruses and sapoviruses on Korean swine farms. Archives Virology, 154, 1765–1774.PubMedCrossRefGoogle Scholar
  10. L'Homme, Y., Brassard, J., Ouardani, M. and Gagné, M.J., 2010. Characterization of novel porcine sapoviruses. Archives Virology, 155, 839–846.PubMedCrossRefGoogle Scholar
  11. Martella, V., Bányai, K., Lorusso, E., Bellacicco, A.L., Decaro, N., Mari, V., Saif, L., Costantini, V., De Grazia, S., Pezzotti, G., Lavazza, A., Buonavoglia, C. 2008. Genetic heterogeneity of porcine enteric caliciviruses identified from diarrhoeic piglets. Virus Genes, 36: 365–373.PubMedCrossRefGoogle Scholar
  12. Martínez, M.A., Alcalá. A.C., Carru, G., Botero, L., Liprandi, F. and Ludert, J.E., 2006. Molecular detection of porcine enteric caliciviruses in Venezuelan farms. Veterinary Microbiology, 116, 77–84.PubMedCrossRefGoogle Scholar
  13. Mijovski, J.Z., Poljsak-Prijatelj, M., Steyer, A., Barlic-Maganja, D. and Koren, S., 2010. Detection and molecular characterisation of noroviruses and sapoviruses in asymptomatic swine and cattle in Slovenian farms. Infection, Genetics and Evolution, 10, 413–420.PubMedCrossRefGoogle Scholar
  14. Nakamura, K., Saga, Y., Iwai, M., Obara, M., Horimoto, E., Hasegawa, S., Kurata, T., Okumura, H., Nagoshi, M. and Takizawa, T., 2010. Frequent detection of noroviruses and sapoviruses in swine and high genetic diversity of porcine sapovirus in Japan during Fiscal Year 2008. Jouranl of Clinical Microbiology, 48, 1215–1222.PubMedCrossRefGoogle Scholar
  15. Page, R.D., 1996. TREEVIEW: an application to display phylogenetic trees on personal computers. Computer Application Bioscience, 12, 357–358.Google Scholar
  16. Phan, T.G., Trinh, Q.D., Yagyu, F., Okitsu, S., Ushijima, H., 2007. Emergence of rare sapovirus genotype among infants and children with acute gastroenteritis in Japan. European Jouranl of Clinical Microbiology Infectious Diseases, 26: 21–27.PubMedCrossRefGoogle Scholar
  17. Posada, D. and Crandall, K.A., 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818.PubMedCrossRefGoogle Scholar
  18. Shen, Q., Zhang, W., Yang, S., Chen, Y., Ning, H., Shan, T., Liu, J., Yang, Z., Cui, L., Zhu,J. and Hua, X., 2009. Molecular detection and prevalence of porcine caliciviruses in eastern China from 2008 to 2009. Archives Virology, 154, 1625–1630.PubMedCrossRefGoogle Scholar
  19. Song, Y.J,, Yu, J.N., Nam, H.M., Bak, H.R., Lee, J.B., Park, S.Y., Song, C.S., Seo, K.H.and Choi, I.S., 2011. Identification of genetic diversity of porcine Norovirus and Sapovirus in Korea. Virus Genes, 42, 394–401.PubMedCrossRefGoogle Scholar
  20. Swofford, D.L., 2002. Paup*: Phylogenetic Analysis Using Parsimony, version 4.0b10. Sinauer Associates, Sunderland, MA.Google Scholar
  21. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G., 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.PubMedCrossRefGoogle Scholar
  22. Wang, Q.H., Souza, M., Funk, J.A., Zhang, W. and Saif, L.J., 2006. Prevalence of noroviruses and sapoviruses in swine of various ages determined by reverset ranscription PCR and microwell hybridization assays. Journal of Clinical Microbiology, 6, 2057–2062.CrossRefGoogle Scholar
  23. Yang, S., Zhang, W., Shen, Q., Huang, F., Wang, Y., Zhu, J., Cui, L., Yang, Z. and Hua, X., 2009. Molecular characterization and phylogenetic analysis of the complete genome of a porcine sapovirus from Chinese swine. Virology Journal, 6, 216.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Guo-Hua Liu
    • 1
  • Run-Cheng Li
    • 1
  • Ze-Bin Huang
    • 1
  • Jun Yang
    • 1
    • 2
  • Chao-Ting Xiao
    • 1
  • Jing Li
    • 1
    • 3
  • Man-Xiang Li
    • 1
  • Yun-Qiu Yan
    • 1
  • Xing-Long Yu
    • 1
    Email author
  1. 1.College of Veterinary MedicineHunan Agricultural UniversityChangshaPeople’s Republic of China
  2. 2.Hunan Institute of Animal and Veterinary ScienceChangshaPeople’s Republic of China
  3. 3.Animal Husbandry and Aquaculture Bureau of TaojiangYiyangPeople’s Republic of China

Personalised recommendations