Skip to main content

Correlations among Anaplasma marginale parasitemia and markers of oxidative stress in crossbred calves

Abstract

The present study was designed to determine the correlations among Anaplasma marginale parasitemia and markers of oxidative stress in crossbred calves. Blood was collected from 11 crossbred calves infected with A. marginale along with 11 healthy crossbred calves as controls for determination of hematology and oxidative stress indicators. Percentage of parasitemia in infected calves varied from 0.8% to 6.0%. The values of hematological indicators and antioxidant enzymes were decreased, whereas erythrocytic lipid peroxidation (LPO) and plasma nitrate (NO) level were significantly (p < 0.05) augmented in A. marginale-infected animals over healthy group. Parasitemia was positively correlated (p < 0.01) with erythrocytic LPO and plasma NO and negatively correlated (p < 0.01) with hematological indicators and antioxidant enzymes. In addition, erythrocytic LPO was negatively correlated (p < 0.01) with the hemoglobin, erythrocyte count, and packed cell volume. From the present study, it can be concluded that anaplasmosis in crossbred calves is associated with a parasitic load-dependent oxidative damage as indicated by poor antioxidant status and enhanced oxidative stress, which are contributed to severe anemia.

This is a preview of subscription content, access via your institution.

References

  • Asri Rezaei, S. and Dalir-Naghadeh, B., 2006. Evaluation of antioxidant status and oxidative stress in cattle naturally infected with Theileria annulata, Veterinary Parasitology, 142, 179–186

    PubMed  Article  CAS  Google Scholar 

  • Bolchoz, L.J., Morrow, J.D., Jollow, D.J., and McMillan, D.C., 2002. Primaquine-induced hemolytic anemia: effect of 6-methoxy-8-hydroxylaminoquinoline on rat erythrocyte sulfhydryl status, membrane lipids, cytoskeletal proteins, and morphology, The Journal Pharmacology and Experimental Therapeutics, 303, 141–148.

    Article  CAS  Google Scholar 

  • Brown, W. C., Shkap, V., Zhu, D., Mcguire, T. C., Tuo, W., Mcelwain, T. F. and Palmer, G. H., 1998. CD4+ T-Lymphocyte and Immunoglobulin G2 Responses in Calves Immunized with Anaplasma marginale Outer Membranes and Protected against Homologous Challenge, Infection and Immunity, 66, 5406–5413

    PubMed  CAS  Google Scholar 

  • Brunet, L.R., 2001. Nitric oxide in parasitic infections, International Immunopharmacology, 1, 1457–1467

    PubMed  Article  CAS  Google Scholar 

  • Camkerten, I., Sahin, T., Borazan, G., Gokcen, A., Erel, O. and Das, A., 2009. Evaluation of blood oxidant/antioxidant balance in dogs with sarcoptic mange, Veterinary Parasitology 161, 106–109

    PubMed  Article  CAS  Google Scholar 

  • Court, R.A., Jackson, L.A. and Lee, R.P., 2001. Elevated anti-parasitic activity in peripheral blood monocytes and neutrophils of cattle infected with Babesia bovis, International Journal of Parasitology, 19, 29–37.

    Article  Google Scholar 

  • De, U.K. and Dey, S., 2010. Evaluation of organ function and oxidant/antioxidant status in goats with sarcoptic mange, Tropical Animal Health and Production, 42, 1663–1668

    PubMed  Article  Google Scholar 

  • Dede, S., Deger, Y., Kahraman, T., Deger, S., Alkan S. and Gemek, M., 2002. Oxidation products of nitric oxide and the concentrations of antioxidant vitamins in parasitized goats, Acta Veterinaria Brno, 71, 341–345.

    Article  CAS  Google Scholar 

  • Ergonul, S. and Askar, T. K., 2009. The investigation of heat shock protein (HSP 27), malondialdehyde (MDA), nitric oxide (NO) and interleukin (IL-6, IL-10) levels in cattle with anaplasmosis, Kafkas University Veteriner Fakultesi Dergisi, 15, 575–579.

    Google Scholar 

  • Fosgate, G.T., Urdaz-Rodríguez, J. H., Dunbar, M. D., Owen Rae, D., Donovan, G.A., Melendez, P., Dobek, G. L. and Alleman, A. R., 2010. Diagnostic accuracy of methods for detecting Anaplasma marginale infection in lactating dairy cattle of Puerto Rico, Journal of Veterinary Diagnostic Investigation,. 22, 192–199

    PubMed  Article  Google Scholar 

  • Kocan, K. M., de la Fuente, J. Guglielmone, A. A. and Meléndez, R.D. 2003.Antigens and Alternatives for Control of Anaplasma marginale Infection in Cattle, Clinical Microbiology Reviews, 16, 698–712

    PubMed  Article  Google Scholar 

  • Kuhn, H. and Borchert, A., 2002. Regulation of enzymatic lipid peroxidation: the interplay of peroxidizing and peroxide reducing enzymes,. Free Radical Biology and Medicine, 33,154–172.

    PubMed  Article  CAS  Google Scholar 

  • Kurt, O., Ok, U. Z., Ertan, P. and Yuksel, H., 2002. Antioxidant substances and malaria, Acta Parasitologica Turcica, 26, 108–112

    Google Scholar 

  • Latimer, K.S., Mahaffey, E.A. and Prasse, K.W., 2003. Veterinary Laboratory Medicine, Clinical Pathology, (Iowa State Press, Iowa)

    Google Scholar 

  • Lykkesfeldt, J. and Svendsen, O., 2007. Oxidants and antioxidants in disease: oxidative stress in farm animals, Veterinary Journal, 173, 502–511

    Article  CAS  Google Scholar 

  • Mainami, M. and Yoshikawa, H., 1979. Simplified assay method of superoxide dismutase activity of clinical use, Clinica Chimica Acta, 92, 337–342

    Article  Google Scholar 

  • Marklund, S. and Marklund, G., 1974. Involvement of superoxide anion radical in the auto-oxidation of pyrogallol and a convenient assay for superoxide dismutase, European Journal of Biochemistry, 47, 469–474.

    PubMed  Article  CAS  Google Scholar 

  • Minjauw, B. and Mcleod, A., 2003. Tick-borne disease and poverty. The impact of ticks and tick-borne disease on the livelihoods of small-scale and marginal livestock owners in India and eastern and southern Africa, (Research report, DFID Animal Health Programme, Centre for Tropical Veterinary Medicine, University of Edinburgh, UK).

  • Nazifi, S., Razavi, S. M., Mansourian, M., Nikahval, B. and Moghaddam, M., 2008. Studies on correlations among parasitaemia and some hemolytic indices in two tropical diseases (theileriosis and anaplasmosis) in Fars province of Iran. Tropical Animal Health and Production, 40, 47–53.

    PubMed  Article  CAS  Google Scholar 

  • Otsuka, Y., Yamasaki, M., Yamato, O. and Maede, Y., 2002. The effect of macrophages on erythrocyte oxidative damage and the pathogenesis of anaemia in Babesia gibsoni infected dogs with low parasitaemia, Journal of Veterinary Medical Science, 64, 221–226.

    PubMed  Article  Google Scholar 

  • Pabon, A., Carmona, J., Burgos, L.C. and Blair, S., 2003. Oxidative stress in patients with non-complicated malaria, Clinical Biochemistry, 36, 71–78

    PubMed  Article  CAS  Google Scholar 

  • Park, J. and Rikihisa, Y., 1992. L-Arginine-dependent killing of intracellular Ehrlichia risticii by macrophages treated with gamma interferon, Infection and Immunity, 60, 3504–3508.

    PubMed  CAS  Google Scholar 

  • Placer, Z.A., Cushman, L. and Johnson, B., 1966. Estimation of product of lipid peroxidation (malonyldialdehyde) in biochemical system. Analytical Biochemistry, 16, 359–364

    PubMed  Article  CAS  Google Scholar 

  • Prins, H.K. and Loos, J.A., 1969. Biochemical Methods in Red Cell Genetics, (Academic Press, London).

    Google Scholar 

  • Saleh, M. A., 2009. Erythrocytic oxidative damage in crossbred cattle naturally infected with Babesia bigemina, Research in Veterinary Science, 86, 43–48

    PubMed  Article  CAS  Google Scholar 

  • Saleh, M.A., Mahran, O. M. and Al-Salahy, M. B., 2011. Circulating oxidative stress status in dromedary camels infested with sarcoptic mange, Veterinary Research Communication, 35, 35–45

    Article  Google Scholar 

  • Santra, A., Maiti, A., Chowdhury, A. and Mazumder, D.N., 2000. Oxidative stress in liver of mice exposed to arsenic contaminated water, Indian Journal of Gastroenterology, 19, 152–155.

    Google Scholar 

  • Sastry, K. V. H., Maudgal, R. P., Mohan, J., Tyagi, J.S. and Rao, G. S., 2002. Spectrophotometric measurement of serum nitrite and nitrate by copper-cadmium alloy, Analytical Biochemistry, 306, 79–82

    PubMed  Article  CAS  Google Scholar 

  • Sato, Y., Kanazawa, S., Sato, K. and Suzuki, Y., 1998. Mechanism of freeradical induced hemolysis of human erythrocytes: II. Hemolysis by lipid soluble radical initiator, Biological and Pharmaceutical Bulletin, 21, 250–256.

    PubMed  Article  CAS  Google Scholar 

  • Utley, H.G., Bernheim, F. and Hochsein, P., 1967. Effect of sulphydryl reagents on peroxidation of microsomes, Archives of Biochemistry and Biophysics, 118, 29–32

    Article  CAS  Google Scholar 

  • von Loewenich, F. D., Scorpio D. G., Udo, R., Dumler, J. S. and Bogdan, C., 2004.Control of Anaplasma phagocytophilum, an obligate intracellular pathogen, in the absence of inducible nitric oxide synthase, phagocyte NADPH oxidase, tumor necrosis factor, Toll-like receptor (TLR)2 and TLR4, or the TLR adaptor molecule MyD88, European Journal of Immunology, 34, 1789–1797.

    Article  Google Scholar 

  • Woldehiwet, Z., 2010. The natural history of Anaplasma phagocytophilum, Veterinary Parasitology, 167, 108–122.

    PubMed  Article  CAS  Google Scholar 

  • Wyatt, C. R., Davis, W. C., Knowles, D. P., Goff, W. L., Palmer, G. H. and McGuire, T. C., 1996. Effect on intraerythrocytic Anaplasma marginale of soluble factors from infected calf blood mononuclear cells, Infection and Immunity, 64, 4846–4849.

    PubMed  CAS  Google Scholar 

  • Zivkovic, Z., Nijhof, A. M., de la Fuente, J., Kocan, K. M. and Jongejan, F., 2007. Experimental transmission of Anaplasma marginale by male Dermacentor reticulates, BMC Veterinary Research, 3, 32.

    PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahadeb Dey.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

De, U.K., Dey, S., Banerjee, P.S. et al. Correlations among Anaplasma marginale parasitemia and markers of oxidative stress in crossbred calves. Trop Anim Health Prod 44, 385–388 (2012). https://doi.org/10.1007/s11250-011-9938-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-011-9938-6

Keywords

  • Anaplasma marginale
  • Anemia
  • Nitric oxide
  • Oxidative stress