Skip to main content

Bayesian estimates of genetic changes for body weight traits of Moghani sheep using Gibbs sampling

Abstract

The objective of the present study was to estimate genetic changes of body weight at different ages in Moghani sheep. Traits included were birth weight (BW, n = 4,208), 3-month weight (3MW, n = 4,175), 6-month weight (6MW, n = 3,138), 9-month weight (9MW, n = 2,244), and yearling weight (YW, n = 1,342). Data and pedigree information used in this study were collected at the Breeding Station of Moghani sheep during 1989–2005. The analysis was carried out for five traits, using the MTGSAM program. Breeding values of individual animals were obtained from a multivariate animal model analysis and genetic trends were obtained by regressing the means of predicted breeding values on year of birth for each trait. Direct genetic trends were positive and significant (P < 0.05) for BW, 3MW, 6MW, 9MW, and YW and were 1.63, 69.20, 79.38, 66.83, and 110.22 g/year, respectively. Also, maternal genetic trends for BW, 3MW, 6MW, 9MW, and YW were positive and significant (P < 0.05) and were 2.36, 49.18, 37.33, 17.73, and 9.67 g/year, respectively. The results showed that improvement of body weights of Moghani sheep seems feasible in selection programs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Al-Shorepy, S. A. and Notter, D. R., 1996. Genetic variation and covariation for ewe reproduction, lamb growth, and lamb scrotal circumference in a fall-lambing sheep flock. Journal of Animal Science, 74, 1490–1498.

    PubMed  CAS  Google Scholar 

  • Bosso, N. A., Cisse, M. F., van der Waaij, E. H., Fall, A. and van Arendonk, J. A. M., 2007. Genetic and phenotypic parameters of body weight in West African Dwarf goat and Djallonke sheep. Small Ruminant Research, 67, 271–278.

    Article  Google Scholar 

  • Farokhad, M. L., Roshanfekr, H., Amiri, S., Mohammadi, K. and Mirzadeh, K., 2011. Genetic trends estimation for some of the growth traits in Arman sheep. Journal of Animal and Veterinary Advances, 10(14), 1801–1803.

    Article  Google Scholar 

  • Ghavi Hossein-Zadeh, N. and Ardalan, M., 2010. Estimation of genetic parameters for body weight traits and litter size of Moghani sheep, using Bayesian approach via Gibbs sampling. The Journal of Agricultural Science, 148, 363–370.

    Article  Google Scholar 

  • Gizaw, S., Lemma, S., Komen, H. and Van Arendonk, J. A. M., 2007. Estimates of genetic parameters and genetic trends for live weight and fleece traits in Menz sheep. Small Ruminant Research, 70, 145–153.

    Article  Google Scholar 

  • Hanford, K. J., Van Vleck, L. D. and Snowder, G. D., 2005. Estimates of genetic parameters and genetic change for reproduction, weight and wool characteristics of Rambouillet sheep. Small Ruminant Research, 57, 175–186.

    Article  Google Scholar 

  • Jurado, J. J., Alonso, A. and Alenda, R., 1994. Selection response for growth in Spanish Merino flock. Journal of Animal Science, 72, 1433–1440.

    PubMed  CAS  Google Scholar 

  • Kariuki, C. M., Ilatsia, E. D., Kosgey, I. S. and Kahi, A. K., 2010. Direct and maternal (co)variance components, genetic parameters and annual trends for growth traits of Dorper sheep in semi-arid Kenya. Tropical Animal Health and Production, 42, 473–481.

    PubMed  Article  CAS  Google Scholar 

  • Klerk, H. C. and Heydenrych, H. J., 1990. BLUP analysis of genetic trends in Dohne Merino. Proceedings of the Fourth World Congress on Genetics Applied to Livestock production, vol. XV, Edinburgh, UK, 23–27 July 1990. Beef Cattle Sheep Pig Genet. Breed. Fiber Fur Meat Qual., 15, 77–80.

    Google Scholar 

  • Mansour, H., Galal, S., Hassan, G. M. and Ghanem, Y., 1977. Estimation of genetic trends in traits of a flock of Barki sheep. Egyptian Journal of Genetics and Cytology, 6, 223–228.

    Google Scholar 

  • Miraei-Ashtiani, S. R., Seyedalian, S. A. R. and Moradi Shahrbabak, M., 2007. Variance components and heritabilities for body weight traits in Sangsari sheep, using univariate and multivariate animal models. Small Ruminant Research, 73, 109–114.

    Article  Google Scholar 

  • Mohammadi, H. and Moradi Shahrebabak, M., 2011. Estimates of genetic and phenotypic trends for body weight traits of Zandi sheep obtained by a univariate and multivariate animal model analysis. ADSA-ASAS joint annual meeting, New Orleans, Louisiana, USA.

    Google Scholar 

  • Mohammadi, K., Beigi Nassiri, M. T., Roshanfekr, H., Mirzadeh, K. and Aghaei, A., 2011. Estimation of genetic trend for body weights at post-weaning in Zandi sheep. Journal of Animal and Veterinary Advances, 10(3), 272–274.

    Article  Google Scholar 

  • Mokhtari, M. S. and Rashidi, A., 2010. Genetic trends estimation for body weights of Kermani sheep at different ages using multivariate animal models. Small Ruminant Research, 88, 23–26.

    Article  Google Scholar 

  • Näsholm, A. and Danell, Ö., 1996. Genetic relationships of lamb weight, maternal ability, and mature ewe weight in Swedish fine wool sheep. Journal of Animal Science, 74, 329–339.

    PubMed  Google Scholar 

  • Raftery, A. E. and Lewis S. M., 1996. Implementing MCMC, in: Gilks W.R., Richardson S., Spiegelhalter D.J. (Eds.), Markov chain Monte Carlo in practice, Chapman & Hall, London, pp. 115–130.

    Google Scholar 

  • Rashidi, A. and Akhshi, H., 2007. Estimation of genetic and environmental trends of growth traits in Kurdi sheep. Iranian Journal of Agricultural Science, 38 (2), 329–335.

    Google Scholar 

  • Rashidi, A., Mokhtari, M. S., Safi Jahanshahi, A. and Mohammad Abadi, M. R., 2008. Genetic parameter estimates of pre-weaning growth traits in Kermani sheep. Small Ruminant Research, 74, 165–171.

    Article  Google Scholar 

  • Robison, O. W., 1981. The influence of maternal genetic effects on the efficiency of selection- A review. Livestock Production Science, 8, 121–137.

    Article  Google Scholar 

  • SAS., 2002. SAS User’s guide v. 9.1: Statistics. SAS Institute, Inc, Cary, NC.

    Google Scholar 

  • Shaat, I., Galal, S. and Mansour, H., 2004. Genetic trends for lamb weights in flocks of Egyptian Rahmani and Ossimi sheep. Small Ruminant Research, 51, 23–28.

    Article  Google Scholar 

  • Shodja, J., Nosrati, M., Alijani, S. and Pirani, N., 2006. Estimation of genetic and phenotypic parameters for body weight at different ages and yearly wool production in Moghani sheep. Knowledge of Agriculture, 57, 153 –162. (In Persian with English abstract).

    Google Scholar 

  • Shrestha, J. N. B., Peters, H. F., Heaney, D. P. and Van Vleck, L. D., 1996. Genetic trends over 20 years of selection in three synthetic Arcotts, Suffolk and Finnish Landrce sheep breeds. 1. Early growth traits. Canadian Journal of Animal Science, 76, 23–34.

    Article  Google Scholar 

  • Van Tassell, C. P. and Van Vleck, L. D., 1995. A Manual for Use of MTGSAM. A Set of FORTRAN Programs To Apply Gibbs Sampling to Animal Models for Variance Component Estimation. U.S. Department of Agriculture, Agricultural Research Service.

  • Vatankhah, M., Moradi Sharebabak, M., Nejati Javarami, A., Miraei-Ashtiani, S. R. and Vaez Torshizi, R., 2004. A review of sheep breeding in Iran. Proc. 1st Iranian Congr. Anim. Aqua. Sci., Tehran, Iran. 591–597.

  • Zishiri, O. T., Cloete S. W. P., Olivier, J. J. and Dzama, K., 2010. Genetic trends in South African terminal sire sheep breeds. South African Journal of Animal Science, 40(Suppl. 1), 455–458.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Ghavi Hossein-Zadeh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghavi Hossein-Zadeh, N. Bayesian estimates of genetic changes for body weight traits of Moghani sheep using Gibbs sampling. Trop Anim Health Prod 44, 531–536 (2012). https://doi.org/10.1007/s11250-011-9930-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-011-9930-1

Keywords

  • Meat sheep
  • Growth traits
  • Genetic trend
  • Animal model
  • Bayesian method