Skip to main content

Application of DNA markers in parentage verification of Boran cattle in Kenya

Abstract

Boran cattle provide livelihood to thousands of households in the arid and semiarid lands of Kenya. Due to their superior adaptive and productive traits in comparison to other breeds of cattle, they have also become a popular choice for breeders in Eastern and Southern Africa. Continued genetic improvement of the breed is important, and therefore accurate performance and pedigree records are required. One hundred seventy-eight pedigree records and blood samples of four Boran stud herds were evaluated for accuracy of parentage allocation using 11 microsatellite markers recommended by ISAG for parentage verification. The panel of the 11 microsatellite markers was found to be highly polymorphic (PIC of 0.6901) with a combined probability of exclusion of 0.9997. The dam misidentification was low ranging between 0% and 5% for the herds tested. The estimated rate of mispaternity however ranged between 4.3% and 80% among the four stud herds, and more than 50% of the offspring of some herds were misidentified. The high rate of mispaternity will have a negative impact on the response to selection. The use of DNA markers for parentage assignment will improve the accuracy of the pedigree records of Boran stud cattle in Kenya and contribute to more accurate selection of superior animals.

This is a preview of subscription content, access via your institution.

References

  • Banos, G., Wiggans, G.R. and Powell, R.L., 2001. Impact of paternity errors in cow identification on genetic evaluations and international comparisons. Journal of Dairy Science 84, 2523–2529.

    PubMed  Article  CAS  Google Scholar 

  • Bolormaa, S., Ruvinsky, A., Walkden-Brown, S. and Van der Werf, J., 2008. DNA based parentage verification in two Australian goat herds. Small Ruminant Research 80, 95–100.

    Article  Google Scholar 

  • Carolino, I., Conceicao, O.S., Ferreira, S., Carolino, N., Silva, F.S. and Gama, L.T., 2009. Implementation of a parentage control system in Portuguese beef-cattle with a panel of microsatellite markers. Genetics and Molecular Biology 32 (2), 306–311.

    PubMed  Article  Google Scholar 

  • Cassell, B.G., Adamec, V. and Pearson, R.E., 2003. Effect of Incomplete Pedigrees on Estimates of Inbreeding and Inbreeding Depression for Days to First Service and Summit Milk Yield in Holsteins and Jerseys. Journal of Dairy Science 86, 2967–2976.

    PubMed  Article  CAS  Google Scholar 

  • Cervini, M., Henrique-Silva, F., Mortari, N. and Matheucci, E. Jr., 2006. Genetic variability of 10 Micrsatellite Markers in characterization of Brazilian Nellore cattle (Bos Indicus), Genetics and Molecular Biology: 29 (3), 486–490.

    Article  CAS  Google Scholar 

  • Cherogony, M.R. and Kios, D.K., 2008. Embryo Transfer: the ADC experience. In: Joint ILRI/EMBRAPA workshop at Kapiti plains, Kenya.

  • Dodds, K.G., McEwan, J.C. and Davis, G.H., 2007. Integration of molecular and quantitative information in sheep and goat industry breeding programmes. Small Ruminant Research 70, 32–41.

    Article  Google Scholar 

  • Dodds, K.G., Tate, M.L. and Sise, J.A., 2005. Genetic evaluation using parentage information from genetic markers. Journal of Animal Science 83, 2271–2279.

    PubMed  CAS  Google Scholar 

  • Geldermann, H., Pieper, U. and Weber, W.E., 1986. Effect of misidentification on the estimation of breeding value and heritability in cattle. Journal of Animal Science 63, 1759–1768.

    PubMed  CAS  Google Scholar 

  • Gomez-Raya, L., Priest, K., Rauw, W.M., Okomo-Adhiambo, M., Thain, D., Bruce, B., Rink, A., Torell, R., Grellman, L., Narayanan, R. and Beattie, C.W., 2008. The value of DNA paternity identification in beef cattle: Examples from Nevada's free-range ranches. Journal of Animal Science 86, 17–24.

    PubMed  Article  CAS  Google Scholar 

  • Hansen, P.J., 2004. Physiology and Cellular adaptation of Zebu cattle to thermal stress. Animal Reproduction Science 82–83, 349–360.

    PubMed  Article  Google Scholar 

  • Holroyd, R.G., Doogan, V.J., De Faveri, J., Fordyce, G., McGowan, M.R., Bertram, J.D., Vankan, D.M., Fitzpatrick, L.A., Jayawardhana, G.A. and Miller, R.G., 2002. Bull selection and use in northern Australia 4. Calf output and predictors of fertility of bulls in multiple-sire herds. Animal Reproduction Science 71, 67–79.

    PubMed  Article  CAS  Google Scholar 

  • Israel, C. and Weller, J.I., 2000. Effect of misidentification on genetic gain and estimation of breeding value in Dairy cattle populations. Journal of Dairy Science 83, 181–187.

    PubMed  Article  CAS  Google Scholar 

  • Kabubo-Mariara, J., 2009. Global warming and livestock husbandry in Kenya: Impacts and adaptations. Ecological Economics 68, 1915–1924.

    Article  Google Scholar 

  • Kahi, A.K., Wasike, C.B. and Rewe, T.O., 2006. Beef production in arid and semi-arid lands: Constraints and prospects for research and development. Outlook on Agriculture 35, 217–225.

    Article  Google Scholar 

  • Kalinowski, S.T., Taper, M.L. and Marshall, T.C., 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular ecology 16, 1099–1106.

    PubMed  Article  Google Scholar 

  • KBCBS, 2010. Boran cattle breeders' society of Kenya, http://www.borankenya.org/home.htm

  • Kios, D.K., 2008. Embryo transfer in Kenya. In: Scientific seminar and AGM Kenya Veterinary Association Rift Valley Branch, Kabarnet, Kenya.

  • Lunstra, D.D. and Cundiff, L.V., 2003. Growth and pubertal development in Brahman-, Boran-, Tuli-, Belgian Blue-, Hereford- and Angus-sired F1 bulls. Journal of Animal Science 81, 1414–1426.

    PubMed  CAS  Google Scholar 

  • Marshall, T.C., Slate, J., Kruuk, L.E.B. and Pemberton, J.C., 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology 7, 639–655.

    PubMed  Article  CAS  Google Scholar 

  • Mwangi, D.M. and Omore, A., 2004. The livestock revolution - A view on implication for Africa. In: Responding to the livestock revolution, British Society of Animal Science 33, 51–66.

    Google Scholar 

  • Ozkan, E., Soysal, M.I., Ozder, M., Koban, E., Sahin, O. and Togan, I., 2009. Evaluation of parentage testing in the Turkish Holstein population based on 12 microsatellite loci. Livestock Science 124, 101–106.

    Article  Google Scholar 

  • Park, S.D.E., 2001. Trypanotolerance in West African cattle and the population genetic effects of selection. Ph.D Thesis, University of Dublin.

  • Pollak, E.J., 2005. Application and impact of new genetic technologies on beef cattle breeding: a “real world” perspective. Australian Journal of Experimental Agriculture 45, 739–748.

    Article  Google Scholar 

  • Rege, J.E.O. and Gibson, J.P., 2003. Animal genetic resources and economic development: Issues in relation to economic valuation. Ecological Economics 45, 319–330.

    Article  Google Scholar 

  • Rewe, T.O., Herold, P., Piepho, H-P., Kahi, A.K. and Valle Zárate, A., 2010. Genetic and economic evaluation of a basic breeding programme for Kenya Boran cattle. Tropical Animal Health Production 42, 327–340.

    Article  CAS  Google Scholar 

  • Ron, M., Blanc, Y., Band, M., Ezra, E. and Weller, J.I., 1996. Misidentification Rate in the Israeli Dairy Cattle Population and Its Implications for Genetic Improvement. Journal of Dairy Science 79, 676–681.

    PubMed  Article  CAS  Google Scholar 

  • Scarpa, R., Ruto, E.S.K., Kristjanson, P., Radeny, M., Drucker, A.G. and Rege, J.E.O., 2003. An empirical comparison of stated and revealed preference value estimates. In: Valuing indigenous cattle breeds in Kenya. Ecological Economics 45, 409–426.

    Article  Google Scholar 

  • Senneke, S.L., MacNeil, M.D. and Van Vleck, L.D., 2004. Effects of sire misidentification on estimates of genetic parameters for birth and weaning weights in Hereford cattle. Journal of Animal Science 82, 2307–2312.

    PubMed  CAS  Google Scholar 

  • Sherman, G.B., Kachman, S.D., Hungerford, L.L., Rupp, G.P., Fox, C.P., Brown, M.D., Feuz, B.M. and Holm, T.R., 2004. Impact of candidate sire number and sire relatedness on DNA polymorphism-based measures of exclusion probability and probability of unambiguous parentage. Animal Genetics 35, 220–226.

    PubMed  Article  CAS  Google Scholar 

  • Stevanovic, J., Stanimirovic, Z., Dimitrijevic, V. and Maletic, M., 2010. Evaluation of 11 microsatellite loci for their use in paternity testing in Yugoslav Pied cattle (YU Simmental cattle). Czech Journal of Animal Science 55(6), 221–226.

    CAS  Google Scholar 

  • Van Eenennaam, A.L., Weaber, R.L., Drake, D.J., Penedo, M.C.T., Quaas, R.L., Garrick, D.J. and Pollak, E.J., 2007. DNA based paternity analysis and genetic evaluation in a large commercial cattle ranch setting. Journal of Animal Science 85, 3159–3169.

    PubMed  Article  Google Scholar 

  • Van Marle- Köster, E. and Nel L.H., 2003. Genetic markers and their application in livestock breeding in South Africa: A review. South African Journal of Animal Science 33 (1), 1–10.

    Google Scholar 

  • Visscher, P.M., Woolliams, J.A., Smith, D. and Williams, J.I., 2002. Estimation of pedigree error in the UK Dairy population using microsatellite markers and the impact on selection. Journal of Dairy Science 85, 2368–2375.

    PubMed  Article  CAS  Google Scholar 

  • Weller, J.I., Feldmesser, E., Golik, M., Tager- Cohen, I., Domochovsky, R., Alus, O., Ezra, E. and Ron, M., 2004. Factors affecting incorrect paternity assignment in the Israeli Holstein population. Journal of Dairy Science 87, 2627–2640.

    PubMed  Article  CAS  Google Scholar 

  • Wiggans, G.R., VanRaden, P.M. and Zuurbier, J., 1995. Calculation and Use of Inbreeding Coefficients for Genetic Evaluation of United States Dairy Cattle. Journal of Dairy Science 78, 1584–1590.

    PubMed  Article  CAS  Google Scholar 

  • Yagüe, G., Goyache, F., Becerra, J., Moreno, C., Sanchez, L. and Altarriba, J., 2009. Bayesian estimates of genetic parameters for preconception traits, gestation length and calving interval in beef cattle. Animal Reproductive Science 114, 72–80.

    Article  Google Scholar 

  • Zander, K.K., Drucker, A.G. and Holm-Muller, K., 2009. Costing the conservation of Animal genetic resources: The case of the Borana cattle in Ethiopia and Kenya. Journal of Arid Environments 73(4–5), 550–556.

    Article  Google Scholar 

Download references

Acknowledgment

We thank Moi University's School of Agriculture and Biotechnology and MU—VLIR UOS for the scholarship grants and the Kenya Boran Cattle Breeders Society for the use of Boran cattle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estè van Marle-Köster.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kios, D., van Marle-Köster, E. & Visser, C. Application of DNA markers in parentage verification of Boran cattle in Kenya. Trop Anim Health Prod 44, 471–476 (2012). https://doi.org/10.1007/s11250-011-9921-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-011-9921-2

Keywords

  • Boran cattle
  • Microsatellite markers
  • Pedigree records
  • Sire misidentification
  • Genetic improvement