Skip to main content

Genetic evaluation of growth of Kenya Boran cattle using random regression models

Abstract

Data consisting of 18 884 weight records collected from 1273 Boran cattle from birth to 24 months of age were used to estimate covariance functions and genetic parameters for growth of Boran cattle using random regression (RR) models under a situation of small herd size and inconsistent recording. The RR model fitted quadratic Legendre polynomials of age at recording for additive genetic and permanent environmental effects. Genetic variance increased from birth, reaching an asymptotic value at 455 days and was maximum at 525 days of age after which it gradually dropped. Permanent environmental variance increased throughout the trajectory. Estimates of temporary environmental variance were heterogeneous across ages. Direct heritability and permanent environmental variance as a proportion of phenotypic variance fluctuated greatly during the early ages but later stabilized at intermediate to later ages; the estimates ranged from 0.11 to 0.33 and from 0.18 to 0.83, respectively. Genetic correlation estimates were positive, ranging from 0.10 to unity. The estimates declined with increasing in lag between the age points. Phenotypic correlation pattern was erratic between early ages, negatively low (−0.02) between the extreme data points and moderate to highly positive (>0.50) between intermediate and later points, with prominent spikes along the diagonal. It is concluded that RR models have potential for modelling growth of Boran cattle, notwithstanding conditions of small herd sizes and inconsistent recording.

Évaluation génétique de la croissance de bétail Boran au Kenya en utilisant des modèles de régression aléatoire

Résumé – Des données consistant en 18 884 enregistrements de poids recueillis auprès de 1273 têtes de bétail Boran de la naissance à 24 mois d’âge ont été utilisées pour estimer les fonctions de covariance et les paramètres génétiques de croissance du bétail Boran en utilisant des modèles de régression aléatoire (RR) sous une situation de petite taille de troupeaux et d’enregistrements irréguliers. Le modèle RR a adapté des codes polynomiaux quadratiques de Legendre à l’âge à l’enregistrement pour la détermination des effets génétiques additifs et environnementaux permanents. La variance génétique a augmenté depuis la naissance, atteignant une valeur asymptomatique à 455 jours et un maximum à 525 jours d’âge après quoi, elle a progressivement diminué. La variance environnementale permanente a augmenté tout le long de la trajectoire. Les estimations de la variance environnementale temporaire ont été hétérogènes à travers les âges. La variance de l’héritabilité directe et la variance environnementale permanente à titre de proportion de la variance phénotypique ont fluctué considérablement durant les âges précoces mais se sont stabilisées plus tard à des âges intermédiaires à plus avancés ; les estimations se sont situées à entre 0.11 et 0.33 et 0.18 à 0.83 respectivement. Les estimations de la corrélation génétique ont été positives allant de 0.10 à une unité. Les estimations ont diminué avec l’augmentation du retard entre les points d’âge. Le schéma de corrélation phonotypique a été irrégulier entre les âges précoces, négativement bas (−0.02) entre les points de données extrêmes et modérés à hautement positif (>0.50) entre les points intermédiaires et avancés avec des pics proéminents le long de la diagonale. Il en a été conclu que le modèle RR avait malgré tout le potentiel de modéliser la croissance du bétail Boran, les conditions de petites tailles de troupeaux et un enregistrement irrégulier.

Evaluación genética del crecimiento del ganado Boran de Kenia utilizando modelos de regresión de efectos aleatorios

Resumen – Se utilizaron datos consistentes en 18884 registros de peso recogidos de 1273 reses de ganado Boran, desde el nacimiento a los 24 meses de edad, para estimar las funciones de covarianza y los parámetros genéticos para el crecimiento del ganado Boran, utilizando modelos de regresión de efectos aleatorios (RR, en inglés) en una situación de tamaño de rebaño pequeño y registros no regulares. El modelo RR se ajustaba a polinomios de Legendre cuadráticos de edad al registrar los efectos genéticos aditivos y ambientales permanentes. La varianza genética aumentaba a partir del nacimiento, alcanzando un valor asintomático a los 455 días y un máximo a los 525 días de edad, después de lo cual decrecía gradualmente. La varianza ambiental permanente aumentaba a través de toda la trayectoria. Las estimaciones de la varianza ambiental temporal resultaron heterogéneas a través de todas las edades. La heredabilidad directa y la varianza ambiental permanente como proporción de la varianza fenotípica fluctuaba enormemente durante las edades más tempranas pero luego se estabilizaba en edades intermedias a más avanzadas; las estimaciones variaban de 0.11 a 0.33 y de 0.18 a 0.83, respectivamente. Las estimaciones de la correlación genética fueron positivas variando de 0.10 a la unidad. Las estimaciones declinaban al aumentar el lapso entre los puntos de edad. La pauta de correlación fenotípica fue errática entre las edades más tempranas, negativamente baja (−0.02) entre los puntos de datos extremos, y de moderada a altamente positiva (>0.50) entre los puntos intermedios y posteriores con picos importantes a lo largo de la diagonal. Se concluye que los modelos RR poseen potencial para representar el crecimiento del ganado Boran; a pesar de las condiciones empleadas de tamaños de rebaños pequeños y registros no regulares.

This is a preview of subscription content, access via your institution.

References

  • Albuquerque, L.G. and Meyer, K., 2001. Estimates of covariance functions for growth from birth to 630 days of age in Nelore cattle. Journal of Animal Science, 79, 2776–2789.

    PubMed  CAS  Google Scholar 

  • Albuquerque, L.G. and Meyer, K., 2005. Estimates of covariance functions for growth of Nelore cattle applying a parametric correlation structure to model within-animal correlations. Livestock Production Science, 93, 213–222.

    Article  Google Scholar 

  • Arango, J.A., Cundiff, L.V. and Van Vleck, L.D., 2004. Covariance functions and random regression models for cow weight in beef cattle. Journal of Animal Science, 82, 54–67.

    PubMed  CAS  Google Scholar 

  • Demeke, S., Neser, F.W.C. and Schoeman, S.J., 2003. Variance components and genetic parameters for early growth traits in a mixed population of purebred Bos indicus and crossbred cattle. Livestock Production Science, 84, 11–21.

    Article  Google Scholar 

  • Fischer, T.M., Gilmour, A.R. and Van der Werf, J.H.J., 2004a. Computing approximate standard errors for genetic parameters derived from random regression models fitted by average information REML. Genetic Selection and Evolution, 36, 363–369.

    Article  Google Scholar 

  • Fischer, T.M., Van der Werf, J.H.J., Banks, R.G. and Ball, A.J., 2004b. Description of lamb growth using random regression on field data. Livestock Production Science, 89, 175–185.

    Article  Google Scholar 

  • GENSTAT, 2003. GenStat – Release 4.2 Discovery Edition, (Lawes Agricultural Trust; Rothamsted Experimental Station).

  • Haile-Mariam, M. and Kassa-Mersha, H., 1995. Estimates of direct and maternal (co)variance components of growth traits in Boran cattle. Journal of Animal Breeding and Genetics, 112, 43–52.

    Google Scholar 

  • Huisman, A.E., 2002. Genetic analysis of growth and feed intake patterns in pigs, (PhD thesis, Wagenigen University, The Netherlands).

  • Huisman, A.E., Veerkamp, R.F. and Van Arendonk, J.A.M., 2002. Genetic parameters for various random regression models to describe the weight data of pigs. Journal of Animal Science, 80, 575–582.

    PubMed  CAS  Google Scholar 

  • Indetie, D., Kinyua, J.M. and Gachanja, P.M., 2000a. Environmental factors contributing to pre-weaning performance of beef cattle in Kenya. Proceedings of the 7th Biannual KARI Conference, Nairobi, 1, 39–43.

    Google Scholar 

  • Indetie, H.A., Indetie, D., Mutai, G.K., Kamundia, J.W., Njuguna, W. and Ondabu, F., 2000b. Susceptibility of cattle to endemic diseases. Proceedings of the 7th Biannual KARI Conference, Nairobi, 1, 331–335.

    Google Scholar 

  • Jamrozik, J., Schaeffer, L.R. and Jansen, G.B., 2000. Approximate accuracies of prediction from random regression models. Livestock Production Science, 66, 85–92.

    Article  Google Scholar 

  • Kirkpatrick, M. and Heckman, N., 1989. A quantitative genetic model for growth, shape, reaction norms and other infinite-dimensional characters. Journal of Mathematical Biology, 27, 429–450.

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick, M., Lofsvold, D. and Bulmer, M., 1990. Analysis of the inheritance, selection and evolution of growth trajectories. Genetics, 124, 979–993.

    PubMed  CAS  Google Scholar 

  • Kirkpatrick, M., Hill, G.H. and Thompson, R., 1994. Estimating the covariance structure of the traits during growth and ageing, illustrated with lactation in dairy cattle. Genetic Research, 64, 57–69.

    Article  CAS  Google Scholar 

  • Lewis, R.M. and Brotherstone, S., 2002. A genetic evaluation of growth in sheep using random regression techniques. Animal Science, 74, 63–70.

    Google Scholar 

  • Meyer, K., 1999. Estimates of genetic and phenotypic covariance functions for post-weaning growth and mature weight of beef cows. Journal of Animal Breeding and Genetics, 116, 181–205.

    Article  Google Scholar 

  • Meyer, K., 2000a. DFREML Version 3.0b—A set of programmes to estimate variance components by Restricted Maximum Likelihood using a Derivative-Free Algorithm. User notes, (University of New England, Armidale, NWS; mimeo).

  • Meyer, K., 2000b. Random regressions to model phenotypic variation in monthly weights of Australian beef cows. Livestock Production Science, 65, 19–38.

    Article  Google Scholar 

  • Meyer, K., 2001a. Estimates of direct and maternal covariance functions for growth of Australian beef calves from birth to weaning. Genetic Selection and Evolution, 33, 487–514.

    Article  CAS  Google Scholar 

  • Meyer, K., 2001b. Estimating genetic covariance functions assuming a parametric correlation structure for environmental effects. Genetic Selection and Evolution, 33, 557–585.

    Article  CAS  Google Scholar 

  • Meyer, K., 2004. Scope for a random regression model in genetic evaluation of beef cattle for growth. Livestock Production Science, 86, 69–83.

    Article  Google Scholar 

  • Meyer, K., 2005a. Estimates of genetic covariance functions for growth of Angus cattle. Journal of Animal Breeding and Genetics, 122, 73–85.

    Article  CAS  Google Scholar 

  • Meyer, K., 2005b. Random regression analysis using B-splines to model growth of Australian Angus cattle. Genetic Selection and Evolution, 37, 473–500.

    Article  Google Scholar 

  • Meyer, K. and Kirkpatrick, M., 2005. Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices. Genetic Selection and Evolution, 37, 1–30.

    Article  CAS  Google Scholar 

  • Nephawe, K.A., 2004. Application of random regression models to the genetic evaluation of cow weight in Bonsmara cattle of South Africa. South African Journal of Animal Science, 34, 166–173.

    Google Scholar 

  • Nobre, P.R.C., Misztal, I., Tsuruta, S., Bertrand, J.K., Silva, L.O.C. and Lopes, P.S., 2003a. Analyses of growth curves of Nellore cattle by multiple-trait and random regression models. Journal of Animal Science, 81, 918–926.

    CAS  Google Scholar 

  • Nobre, P.R.C., Misztal, I., Tsuruta, S., Bertrand, J.K., Silva, L.O.C. and Lopes, P.S., 2003b. Genetic evaluation of growth in Nellore cattle by multiple-trait and random regression models. Journal of Animal Science, 81, 927–932.

    CAS  Google Scholar 

  • Okeyo, A.M., Mosi, R.O. and Langat, L.K.I., 1998. Effects of parity and previous parous status on reproductive and productive performance of the Kenya Boran cows. Tropical Agriculture (Trinidad), 75, 384–389.

    Google Scholar 

  • Tier, B. and Meyer, K., 2004. Approximating prediction error covariances among additive genetic effects within animals in multiple-trait and random regression models. Journal of Animal Breeding and Genetics, 121, 77–89.

    Article  Google Scholar 

  • Wasike, C.B., Indetie, D., Ojango, J.M.K. and Kahi, A.K., 2007. Direct and maternal (co)variance components and genetic parameters for growth and reproductive traits in the Boran cattle in Kenya. Journal of Animal Breeding and Genetics, (submitted).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Kahi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wasike, C.B., Indetie, D., Pitchford, W.S. et al. Genetic evaluation of growth of Kenya Boran cattle using random regression models. Trop Anim Health Prod 39, 493–505 (2007). https://doi.org/10.1007/s11250-007-9014-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-007-9014-4

Keywords

  • Beef cattle
  • Covariance functions
  • Growth
  • Random regression model
  • Parameter estimates