Skip to main content
Log in

Effect of Anionic Alkyl Chain Length on Tribological Properties of Ionic Liquids: Molecular Dynamics Simulations

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Ionic liquids (ILs) are widely adopted as lubricating materials in engineering fields for steel sliding contacts, and the adsorption structure and kinematic state of friction surfaces are crucial for understanding the improvement of tribological properties in experiments. In this study, we employed molecular dynamics methods to examine the structure and shear dynamics of five ILs with the same cationic triethanolamine paired with carboxylate anions of different alkyl chain length, confined between two crystalline iron surfaces. The results show that the chain length of anions influence the quantity of hydrogen bonds formed, the distribution on the iron surfaces, the thickness of the adsorption layers during the sliding process and the overall motion state. Under elastohydrodynamic lubrication conditions, ILs with longer alkyl chain exhibit less friction on a macroscopic scale due to the weaker hydrogen bonds between the anions and cations, the formation of thicker adsorption layers between sliding surfaces, and the overall pronounced layering phenomenon. These atomic insights into the structure and state of motion during friction can help promote the use of ILs as lubricating materials in engineering applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All experimental data are available upon request.

References

  1. Luo, J., Zhou, X.: Superlubricitive engineering—future industry nearly getting rid of wear and frictional energy consumption. Friction 8, 643–665 (2020). https://doi.org/10.1007/s40544-020-0393-0

    Article  Google Scholar 

  2. Holmberg, K., Erdemir, A.: Influence of tribology on global energy consumption, costs and emissions. Friction 5, 263–284 (2017). https://doi.org/10.1007/s40544-017-0183-5

    Article  CAS  Google Scholar 

  3. Ye, C., Liu, W., Chen, Y., Yu, L.: Room-temperature ionic liquids: a novel versatile lubricant. Chem. Commun. 21, 2244–2245 (2001). https://doi.org/10.1039/b106935g

    Article  CAS  Google Scholar 

  4. Song, J.: Research progress of ionic liquids as lubricants. ACS Omega 6, 29345–29349 (2021). https://doi.org/10.1021/acsomega.1c04512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou, Y., Qu, J.: Ionic liquids as lubricant additives: a review. ACS Appl. Mater. Interfaces 9, 3209–3222 (2017). https://doi.org/10.1021/acsami.6b12489

    Article  CAS  PubMed  Google Scholar 

  6. Palacio, M., Bhushan, B.: A Review of ionic liquids for green molecular lubrication in nanotechnology. Tribol. Lett. 40, 247–268 (2010). https://doi.org/10.1007/s11249-010-9671-8

    Article  CAS  Google Scholar 

  7. Qu, J., Truhan, J.J., Dai, S., Luo, H., Blau, P.J.: Ionic liquids with ammonium cations as lubricants or additives. Tribol. Lett. 22, 207–214 (2006). https://doi.org/10.1007/s11249-006-9081-0

    Article  CAS  Google Scholar 

  8. Dong, R., Yu, Q., Bai, Y., Wu, Y., Ma, Z., Zhang, J., et al.: Towards superior lubricity and anticorrosion performances of proton-type ionic liquids additives for water-based lubricating fluids. Chem. Eng. J. 383, 123201 (2020). https://doi.org/10.1016/j.cej.2019.123201

    Article  CAS  Google Scholar 

  9. Cai, M., Yu, Q., Liu, W., Zhou, F.: Ionic liquid lubricants: when chemistry meets tribology. Chem. Soc. Rev. 49, 7753–7818 (2020). https://doi.org/10.1039/d0cs00126k

    Article  CAS  PubMed  Google Scholar 

  10. Somers, A., Howlett, P., MacFarlane, D., Forsyth, M.: A review of ionic liquid lubricants. Lubricants 1, 3–21 (2013). https://doi.org/10.3390/lubricants1010003

    Article  Google Scholar 

  11. Yu, Q., Zhang, C., Dong, R., Shi, Y., Wang, Y., Bai, Y., et al.: Physicochemical and tribological properties of gemini-type halogen-free dicationic ionic liquids. Friction 9, 344–355 (2020). https://doi.org/10.1007/s40544-019-0348-5

    Article  CAS  Google Scholar 

  12. Yao, M., Fan, M., Liang, Y., Zhou, F., Xia, Y.: Imidazolium hexafluorophosphate ionic liquids as high temperature lubricants for steel–steel contacts. Wear 268, 67–71 (2010). https://doi.org/10.1016/j.wear.2009.06.028

    Article  CAS  Google Scholar 

  13. Chen, G., Zhang, C., Huang, Q., Yu, Q., Yang, Z., Zhou, C., et al.: Novel phosphate organic guanidine salt water-based additive with integrated anti-friction, anti-wear and anti-corrosion properties. Tribol. Lett. 70, 33 (2022). https://doi.org/10.1007/s11249-022-01577-4

    Article  CAS  Google Scholar 

  14. Fang, H., Li, Y., Zhang, S., Ding, Q., Hu, L., Lu, K.: The superior lubricating performance and unique mechanism of oil-soluble protic ionic liquids with short alkyl chains. J. Colloid Interface Sci. 623, 257–266 (2022). https://doi.org/10.1016/j.jcis.2022.04.174

    Article  CAS  PubMed  Google Scholar 

  15. Fang, H., Li, Y., Zhang, S., Ding, Q., Hu, L.: Lubricating performances of oil-miscible trialkylanmmonium carboxylate ionic liquids as additives in PAO at room and low temperatures. Appl. Surf. Sci. 568, 150922 (2021). https://doi.org/10.1016/j.apsusc.2021.150922

    Article  CAS  Google Scholar 

  16. Dong, R., Bao, L., Yu, Q., Wu, Y., Ma, Z., Zhang, J., et al.: Effect of electric potential and chain length on tribological performances of ionic liquids as additives for aqueous systems and molecular dynamics simulations. ACS Appl. Mater. Interfaces 12, 39910–39919 (2020). https://doi.org/10.1021/acsami.0c11016

    Article  CAS  PubMed  Google Scholar 

  17. Wang, Y., Wang, C., Zhang, Y., Huo, F., He, H., Zhang, S.: Molecular insights into the regulatable interfacial property and flow behavior of confined ionic liquids in graphene nanochannels. Small 15, 1804508 (2019). https://doi.org/10.1002/smll.201804508

    Article  CAS  Google Scholar 

  18. David, A., Fajardo, O.Y., Kornyshev, A.A., Urbakh, M., Bresme, F.: Electrotunable lubricity with ionic liquids: the influence of nanoscale roughness. Faraday Discuss. 199, 279–297 (2017). https://doi.org/10.1039/c6fd00244g

    Article  CAS  PubMed  Google Scholar 

  19. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  20. Martínez, L., Andrade, R., Birgin, E.G., Martínez, J.M.: PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009). https://doi.org/10.1002/jcc.21224

    Article  CAS  PubMed  Google Scholar 

  21. Ewen, J.P., Echeverri Restrepo, S., Morgan, N., Dini, D.: Nonequilibrium molecular dynamics simulations of stearic acid adsorbed on iron surfaces with nanoscale roughness. Tribol. Int. 107, 264–273 (2017). https://doi.org/10.1016/j.triboint.2016.11.039

    Article  CAS  Google Scholar 

  22. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. 18, 015012 (2010). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  23. Dodda, L.S., de Vaca, I.C., Tirado-Rives, J., Jorgensen, W.L.: LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res. 45, 331–336 (2017). https://doi.org/10.1093/nar/gkx312

    Article  CAS  Google Scholar 

  24. William, L., Jorgensen, D.S.M., Tirado-Rives, J.: development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996). https://doi.org/10.1021/ja9621760

    Article  Google Scholar 

  25. Mendelev, M.I., Han, S., Srolovitz, D.J., Ackland, G.J., Sun, D.Y., Asta, M.: Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos. Mag. 83, 3977–3994 (2003). https://doi.org/10.1080/14786430310001613264

    Article  CAS  Google Scholar 

  26. Gusain, R., Bakshi, P.S., Panda, S., Sharma, O.P., Gardas, R., Khatri, O.P.: Physicochemical and tribophysical properties of trioctylalkylammonium bis(salicylato)borate (N888n-BScB) ionic liquids: effect of alkyl chain length. Phys. Chem. Chem. Phys. 19, 6433–6442 (2017). https://doi.org/10.1039/c6cp05990b

    Article  CAS  PubMed  Google Scholar 

  27. Huang, G., Fan, S., Ba, Z., Cai, M., Qiao, D.: Insight into the lubricating mechanism for alkylimidazolium phosphate ionic liquids with different alkyl chain length. Tribol. Int. 140, 105886 (2019). https://doi.org/10.1016/j.triboint.2019.105886

    Article  CAS  Google Scholar 

  28. Zheng, Z., Liu, X., Yu, H., Chen, H., Feng, D., Qiao, D.: Insight into macroscale superlubricity of polyol aqueous solution induced by protic ionic liquid. Friction 10, 2000–2017 (2022). https://doi.org/10.1007/s40544-021-0563-8

    Article  CAS  Google Scholar 

  29. Alenka Luzar, D.C.: Effect of environment on hydrogen bond dynamics in liquid water. Phys. Rev. Lett. 76, 928–931 (1996). https://doi.org/10.1103/PhysRevLett.76.928

    Article  Google Scholar 

  30. Blanco-Díaz, E.G., Castrejón-González, E.O., Alvarado, J.F.J., Estrada-Baltazar, A., Castillo-Borja, F.: Rheological behavior of ionic liquids: analysis of the H-bond formation by molecular dynamics. J. Mol. Liq. 242, 265–271 (2017). https://doi.org/10.1016/j.molliq.2017.06.128

    Article  CAS  Google Scholar 

  31. Ma, Y., Liu, Y., Su, H., Wang, L., Zhang, J.: Relationship between hydrogen bond and viscosity for a series of pyridinium ionic liquids: molecular dynamics and quantum chemistry. J. Mol. Liq. 255, 176–184 (2018). https://doi.org/10.1016/j.molliq.2018.01.121

    Article  CAS  Google Scholar 

  32. Liang, H., Yin, T., Liu, M., Fu, C., Xia, X., Zou, S., et al.: Unravelling high-load superlubricity of ionic liquid analogues by in situ raman: incomplete hydration induced by competitive exchange of external water with crystalline water. J. Phys. Chem. Lett. 14, 453–459 (2023). https://doi.org/10.1021/acs.jpclett.2c03667

    Article  CAS  PubMed  Google Scholar 

  33. Sernaglia, M., Blanco, D., Battez, A.H., Viesca, J.L., González, R., Bartolomé, M.: Two fatty acid anion-based ionic liquids - part I: physicochemical properties and tribological behavior as neat lubricants. J. Mol. Liq. 305, 112827 (2020). https://doi.org/10.1016/j.molliq.2020.112827

    Article  CAS  Google Scholar 

  34. Rahman, M.H., Liu, T., Macias, T., Misra, M., Patel, M., Martini, A., et al.: Physicochemical and tribological comparison of bio- and halogen-based ionic liquid lubricants. J. Mol. Liq. 369, 120918 (2023). https://doi.org/10.1016/j.molliq.2022.120918

    Article  CAS  Google Scholar 

  35. Wijanarko, W., Khanmohammadi, H., Espallargas, N.: Effect of steel hardness and composition on the boundary lubricating behavior of low-viscosity PAO formulated with dodecanoic acid and ionic liquid additives. Langmuir 38, 2777–2792 (2022). https://doi.org/10.1021/acs.langmuir.1c02848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Federici Canova, F., Matsubara, H., Mizukami, M., Kurihara, K., Shluger, A.L.: Shear dynamics of nanoconfined ionic liquids. Phys. Chem. Chem. Phys. 16, 8247–8256 (2014). https://doi.org/10.1039/c4cp00005f

    Article  CAS  Google Scholar 

  37. Perez-Martinez, C.S., Perkin, S.: Interfacial Structure and boundary lubrication of a dicationic ionic liquid. Langmuir 35, 15444–15450 (2019). https://doi.org/10.1021/acs.langmuir.9b01415

    Article  CAS  PubMed  Google Scholar 

  38. Liu, T., Rahman, M.H., Menezes, P.L., Martini, A.: Effect of ion pair on contact angle for phosphonium ionic liquids. J. Phys. Chem. B 126, 4354–4363 (2022). https://doi.org/10.1021/acs.jpcb.2c01989

    Article  CAS  Google Scholar 

  39. Di Lecce, S., Kornyshev, A.A., Urbakh, M., Bresme, F.: Lateral ordering in nanoscale ionic liquid films between charged surfaces enhances lubricity. ACS Nano 14, 13256–13267 (2020). https://doi.org/10.1021/acsnano.0c05043

    Article  CAS  PubMed  Google Scholar 

  40. Cooper, P.K., Wear, C.J., Li, H., Atkin, R.: Ionic liquid lubrication of stainless steel: friction is inversely correlated with interfacial liquid nanostructure. ACS Sustain. Chem. Eng. 5, 11737–11743 (2017). https://doi.org/10.1021/acssuschemeng.7b03262

    Article  CAS  Google Scholar 

Download references

Funding

The project is supported by the National Natural Science Foundation of China (Grant No. 52035002).

Author information

Authors and Affiliations

Authors

Contributions

Z.M: Methodology, Writing – original draft, Formal analysis, Data curation. F.D: Conceptualization, Funding acquisition, Writing – review & editing, Supervision. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Fangli Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1208 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Duan, F. Effect of Anionic Alkyl Chain Length on Tribological Properties of Ionic Liquids: Molecular Dynamics Simulations. Tribol Lett 72, 48 (2024). https://doi.org/10.1007/s11249-024-01843-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-024-01843-7

Keywords

Navigation