Skip to main content
Log in

Loss and Recovery of Nano-MoS2 Lubricity in Carbon Soot Contaminated Polyalphaolefin

  • Research
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Carbon soot (CS) is a contaminant of engine oil, and the interaction between CS and oil additives should be understood. This work investigated the interaction between CS and nano-MoS2. Results show that adding 0.5% nano-MoS2 in polyalphaolefin significantly improved the lubricity. However, the lubricity of nano-MoS2 unexpectedly disappeared after adding 0.5% CS because CS prevented nano-MoS2 from forming a tribofilm. Interestingly, the lubricity was mostly recovered by ZDDP, which removed the inhibition of CS by helping form a MoS2-contained tribofilm. Another method was also found to remove the inhibition without the help of ZDDP, that is, replacing nano-MoS2 with nano-MoS2/nano-TiO2 heterostructures. Nano-TiO2 was immune to soot and could carry nano-MoS2 into the friction interface by their heterojunction to synergistically form a tribofilm.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data will be shared on reasonable request to the corresponding author.

Abbreviations

3D:

Three-dimensional

COF:

Coefficient of friction

CS:

Carbon soot

EDS:

Energy dispersive x-ray spectroscopy

HFRR:

High-frequency reciprocating rig

HRTEM:

High-resolution transmission electron microscopy

LSM:

Laser scanning microscopy

PAO:

Polyalphaolefin

SEM:

Scanning electron microscopy

T202 (ZDDP):

Zinc butyl octyl dithiophosphate

WSD:

Wear scar diameter

XPS:

X-ray photoelectron spectrometry

XRD:

X-ray powder diffraction

ZDDP:

Zinc dialkyl dithiophosphates

References

  1. Kirkby, T., Smith, J.J., Berryman, J., Fowell, M., Reddyhoff, T.: Soot wear mechanisms in heavy-duty diesel engine contacts. Wear 524–525, 204733 (2023)

    Article  Google Scholar 

  2. Kumara, C., Meyer, H.M., III., Qu, J.: Material-dependent antagonistic effects between soot and ZDDP. Adv. Mater. Interfaces 7, 1901956 (2020)

    Article  CAS  Google Scholar 

  3. Bagi, S., Sharma, V., Aswath, P.B.: Role of dispersant on soot-induced wear in Cummins ISB engine test. Carbon 136, 395–408 (2018)

    Article  CAS  Google Scholar 

  4. Antusch, S., Dienwiebel, M., Nold, E., Albers, P., Spicher, U., Scherge, M.: On the tribochemical action of engine soot. Wear 269, 1–12 (2010)

    Article  CAS  Google Scholar 

  5. Shi, B., Guo, J.H., Cao, X.A., Hu, E.Z., Hu, K.H.: Effects of carbon soot from the combustion of diesel fuels on the tribological properties of lubricating oil and diesel fuels. Ind. Lubr. Tribol. 70, 532–537 (2018)

    Article  Google Scholar 

  6. Guo, M.F., Cai, Z.B., Zhang, Z.C., Zhu, M.H.: Characterization and lubrication properties of diesel soot nanoparticles as oil lubricant additives. RSC Adv. 5, 101965–101974 (2015)

    Article  CAS  Google Scholar 

  7. Karin, P., Chammana, P., Oungpakornkaew, P., Rungsritanapaisan, P., Amornprapa, W., Charoenphonphanich, C., Sriprapha, K.: Impact of soot nanoparticle size and quantity on four-ball steel wear characteristics using EDS, XRD and electron microscopy image analysis. J. Mater. Res. Technol. 16, 1781–1791 (2022)

    Article  CAS  Google Scholar 

  8. Motamen Salehi, F., Morina, A., Neville, A.: The effect of soot and diesel contamination on wear and friction of engine oil pump. Tribol. Int. 115, 285–296 (2017)

    Article  Google Scholar 

  9. Yamaguchi, E. S., Untermann, M., Roby, S. H., Ryason, P. R., Yeh, S. W.: Soot wear in diesel engines. P. I. Mech. Eng. J.−J. Eng. 220, 463−469 (2006)

  10. Nagai, I., Endo, H., Nakamura, H., Yano, H.: Soot and valve train wear in passenger car diesel engines. SAE Trans. 92, 986–1000 (1983)

    Google Scholar 

  11. Vyavhare, K., Bagi, S., Patel, M., Aswath, P.B.: Impact of diesel engine oil additives-soot interactions on physiochemical, oxidation and wear characteristics of soot. Energy Fuels 33, 4515–4530 (2019)

    Article  CAS  Google Scholar 

  12. Zhang, Q., Hu, X., Duan, F., Meng, Y.: An efficient lubrication approach to mitigate soot-induced wear: synergistic repair effect of magnetic MoS2 composites and magnetic field. Wear 488–489, 204182 (2022)

    Article  Google Scholar 

  13. Wei, X., Li, W., Fan, X., Zhu, M.: MoS2-functionalized attapulgite hybrid toward high-performance thickener of lubricating grease. Tribol. Int. 179, 108135 (2023)

    Article  CAS  Google Scholar 

  14. Guan, Z., Zhang, P., Florian, V., Wu, Z., Zeng, D., Liu, J., Wang, B., Tu, X., Li, S., Li, W.: Preparation and tribological behaviors of magnesium silicate hydroxide-MoS2 nanoparticles as lubricant additive. Wear 492–493, 204237 (2022)

    Article  Google Scholar 

  15. Serpini, E., Rota, A., Valeri, S., Ukraintsev, E., Rezek, B., Polcar, T., Nicolini, P.: Nanoscale frictional properties of ordered and disordered MoS2. Tribol. Int. 136, 67–74 (2019)

    Article  CAS  Google Scholar 

  16. Cao, X., Gan, X., Lang, H., Yu, K., Ding, S., Peng, Y., Yi, W.: Anisotropic nanofriction on MoS2 with different thicknesses. Tribol. Int. 134, 308–316 (2019)

    Article  CAS  Google Scholar 

  17. Yan, Y., Meng, Z., Liu, H., Wang, J., Chen, B., Yan, F.: Nano-MoS2 modified PBO fiber hybrid for improving the tribological behavior and thermal stability of TPI/PEEK blends. Tribol. Int. 144, 106117 (2020)

    Article  CAS  Google Scholar 

  18. Yi, M., Qiu, J., Xu, W.: Tribological properties of ultrathin MoS2 nanosheets in formulated engine oil and possible friction mechanism at elevated temperatures. Tribol. Int. 167, 107426 (2022)

    Article  CAS  Google Scholar 

  19. Guan, Z., Wu, Z., Liu, J., Tu, X., Li, S.: Controllable fabrication of magnesium silicate hydroxide reinforced MoS2 hybrid nanomaterials as effective lubricant additives in PAO. Appl. Surf. Sci. 597, 153777 (2022)

    Article  CAS  Google Scholar 

  20. Liu, Y., Hu, K., Hu, E., Guo, J., Han, C., Hu, X.: Double hollow MoS2 nano-spheres: Synthesis, tribological properties, and functional conversion from lubrication to photocatalysis. Appl. Surf. Sci. 392, 1144–1152 (2017)

    Article  CAS  Google Scholar 

  21. Xie, M., Pan, B., Liu, H., Li, N., Chen, Z., Yan, J., Fu, Z., Guo, S., Wang, H.: One-step synthesis of carbon sphere@1T-MoS2 towards superior antiwear and lubricity. Tribol. Int. 176, 107927 (2022)

    Article  CAS  Google Scholar 

  22. Gou, R., Chen, J., Luo, X., Li, K.: Tribofilm formation mechanism and friction behavior of polycrystalline diamond compact after cobalt leaching added molybdenum disufide nanoparticles in different base oils. Int. J. Refract. Met. H. 111, 106101 (2023)

    Article  CAS  Google Scholar 

  23. Spikes, H.A.: Additive-additive and additive-surface interactions in lubrication. Lubr. Sci. 2, 3–23 (1989)

    Article  CAS  Google Scholar 

  24. Guegan, J., Southby, M., Spikes, H.: Friction modifier additives, synergies and antagonisms. Tribol. Lett. 67, 83 (2019)

    Article  Google Scholar 

  25. Xu, Y., Hu, E., Hu, K., Xu, Y., Hu, X.: Formation of an adsorption film of MoS2 nanoparticles and dioctyl sebacate on a steel surface for alleviating friction and wear. Tribol. Int. 92, 172–183 (2015)

    Article  CAS  Google Scholar 

  26. Green, D.A., Lewis, R.: Effect of soot on oil properties wear of engine components. J. Phys. D Appl. Phys. 40, 5488–5501 (2007)

    Article  CAS  Google Scholar 

  27. Liu, X., Dong, H., Lu, Z., Zhang, J., Liu, B.: The influence mechanism of MoS2 and NiTi microparticles on the friction and wear properties of bearing steel. Tribol. Int. 160, 107033 (2021)

    Article  CAS  Google Scholar 

  28. Mutyala, K.C., Wu, Y.A., Erdemir, A., Sumant, A.V.: Graphene-MoS2 ensembles to reduce friction and wear in DLC-Steel contacts. Carbon 146, 524–527 (2019)

    Article  CAS  Google Scholar 

  29. Borgaonkar, A., Syed, I.: Tribological investigation of composite MoS2–TiO2–ZrO2 coating material by response surface methodology approach. J. Tribol. 144, 031401 (2022)

    Article  CAS  Google Scholar 

  30. Zhang, Y., Li, P., Ji, L., Liu, X., Wan, H., Chen, L., Li, H., Jin, Z.: Tribological properties of MoS2 coating for ultra-long wear-life and low coefficient of friction combined with additive g-C3N4 in air. Friction 9, 789–801 (2021)

    Article  CAS  Google Scholar 

  31. Feng, P., Ren, Y., Li, Y., He, J., Zhao, Z., Ma, X., Fan, X., Zhu, M.: Synergistic lubrication of few-layer Ti3C2Tx/MoS2 heterojunction as a lubricant additive. Friction 10, 2018–2032 (2022)

    Article  CAS  Google Scholar 

  32. Olomolehin, Y., Kapadia, R., Spikes, H.: Antagonistic interaction of antiwear additives and carbon black. Tribol. Lett. 37, 49–58 (2010)

    Article  CAS  Google Scholar 

  33. Zhang, X., Niu, Y., Meng, X., Li, Y., Zhao, J.: Structural evolution and characteristics of the phase transformations between α-Fe2O3, Fe3O4 and γ-Fe2O3 nanoparticles under reducing and oxidizing atmospheres. CrystEngComm 15, 8166–8172 (2013)

    Article  CAS  Google Scholar 

  34. de Faria, D.L.A., Venâncio Silva, S., de Oliveira, M.T.: Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 28, 873–878 (1997)

    Article  Google Scholar 

  35. Bojarsk, Z., Kopytowski, J., Mazurkiewicz-Pawlicka, M., Bazarnik, P., Gierlotka, S., Rożeń, A., Makowski, Ł: Molybdenum disulfide-based hybrid materials as new types of oil additives with enhanced tribological and rheological properties. Tribol. Int. 160, 106999 (2021)

    Article  Google Scholar 

  36. Rai, Y., Neville, A., Morina, A.: Transient processes of MoS2 tribofilm formation under boundary lubrication. Lubr. Sci. 28, 449–471 (2016)

    Article  CAS  Google Scholar 

  37. Xu, J., Chai, L., Qiao, L., He, T., Wang P.: Influence of C dopant on the structure, mechanical and tribological properties of r.f.-sputtered MoS2/a-C composite films. Appl. Surf. Sci. 364, 249−256 (2016)

  38. Hsiao, Y.J., Fang, T.H., Ji, L.W., Yang, B.Y.: Red-shift effect and sensitive responsivity of MoS2/ZnO flexible photodetectors. Nanoscale Res. Lett. 10, 443 (2015)

    Article  Google Scholar 

  39. Wang, H.W., Skeldon, P., Thompson, G.E.: XPS studies of MoS2 formation from ammonium tetrathiomolybdate solutions. Surf. Coat. Technol. 91, 200–207 (1997)

    Article  CAS  Google Scholar 

  40. Gao, X., Hu, M., Sun, J., Fu, Y., Yang, J., Liu, W., Weng, L.: Changes in the composition, structure and friction property of sputtered MoS2 films by LEO environment exposure. Appl. Surf. Sci. 330, 30–38 (2015)

    Article  CAS  Google Scholar 

  41. Rabaso, P., Ville, F., Dassenoy, F., Diaby, M., Afanasiev, P., Cavoret, J., Vacher, B., Le Mogne, T.: Boundary lubrication: Influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction. Wear 320, 161–178 (2014)

    Article  CAS  Google Scholar 

  42. Hu, K.H., Huang, F., Hu, X.G., Xu, Y.F., Zhou, Y.Q.: Synergistic effect of nano-MoS2 and anatase nano-TiO2 on the lubrication properties of MoS2/TiO2 nano-clusters. Tribol. Lett. 43, 77–87 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant No. 52075144) and the Natural Science Foundation for Colleges and Universities in Anhui Province (Grant No. 2022AH010096).

Funding

National Natural Science Foundation of China (Grant No. 52075144); Natural Science Foundation for Colleges and Universities in Anhui Province (Grant No. 2022AH010096).

Author information

Authors and Affiliations

Authors

Contributions

YM as a master student who finished part tribological tests and characterization, and wrote the main manuscript. CZ as a master student who finished part tribological tests and characterization. ZL as a master student who finished part characterization. YX who gave some suggestions for the experiment process and analyzed part data. EH who gave some suggestions for the experiment process and analyzed part data. KH as a corresponding author who organize the manuscript and supply the fee to study this research. He also analyzes the tribological mechanisms.

Corresponding author

Correspondence to Kunhong Hu.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Y., Zhong, C., Li, Z. et al. Loss and Recovery of Nano-MoS2 Lubricity in Carbon Soot Contaminated Polyalphaolefin. Tribol Lett 71, 120 (2023). https://doi.org/10.1007/s11249-023-01793-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01793-6

Keywords

Navigation