Skip to main content

Advertisement

Log in

Effect of the GLC Coating Thickness on the Mechanical and Tribological Properties of the CrN/GLC Coatings

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The primary objective of this research is to investigate the mechanical and tribological characteristics of thin coatings that consist of graphite-like carbon (GLC) and chromium nitride (CrN). The incorporation of GLC and CrN coatings offers a synergistic effect by leveraging the wear-resistant properties of CrN and the low-friction and lubricating properties of GLC. Unbalanced closed-field magnetron sputtering was employed to deposit CrN/GLC coatings onto SDC90 steel. The microstructure, mechanical, and tribological properties of the coatings were comprehensively studied and compared. From the Raman, the ID/IG of the GLC coatings improved from 1.7 to 2.7 by changing the GLC coating thicknesses from 0.2 to 2.0 μm. The records displayed that changing the GLC coating thickness of the CrN/GLC coating can reduce the surface toughness, adhesion strength, and critical loads (the critical loads of S1 and S2 > 40 N, the critical load of S3 < 30–40 N). On the contrary, by changing the GLC coating thickness, the elasticity modulus (from 144.88 to 169.60 GPa), hardness (from 10.27 to 14.32 GPa), and tribological properties of the coatings were positively affected. Regarding the impact friction and wear behavior, the thicker GLC coatings show excellent properties with a lower wear volume and wear rate. The knowledge acquired about the GLC coatings can be utilized to enhance the impact friction and wear of the cold work die steels.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. Stavridis, N., Rigos, D., Papageorgiou, D., Chicinaş, I., Medrea, C.: Failure analysis of cutting die used for the production of car racks. Eng. Fail. Anal. 18(2), 783–788 (2011). https://doi.org/10.1016/j.engfailanal.2010.12.020

    Article  CAS  Google Scholar 

  2. Okolovich, G.: Tool steels for cold working dies. Met. Sci. Heat Treat. 48(5), 233–239 (2006). https://doi.org/10.1007/s12541-017-0016-5

    Article  CAS  Google Scholar 

  3. Song, R., Zhang, K., Chen, G.: Electron beam surface remelting of AISI D2 cold-worked die steel. Surf. Coat. Technol. 157(1), 1–4 (2002). https://doi.org/10.1016/S0257-8972(02)00136-6

    Article  CAS  Google Scholar 

  4. Holmberg, K., Erdemir, A.: Influence of tribology on global energy consumption, costs and emissions. Friction 5(3), 263–284 (2017). https://doi.org/10.1007/s40544-017-0183-5

    Article  CAS  Google Scholar 

  5. Dong, W.L., Yang, X.F., Song, F., Wu, M., Zhu, Y., Wang, Z.Y.: Anti-friction and wear resistance analysis of cemented carbide coatings. Int. J. Adv. Manuf. Technol. 122, 1–27 (2022). https://doi.org/10.1007/s00170-022-10092-8

    Article  Google Scholar 

  6. Zhu, Z.-Y., Shi, W., Wan, Z., Yuan, J.-F., Li, X.: Effects of temperature on internal friction of graphit-iC graphite-like carbon coatings. TFPA 13, 209–214 (2013). https://doi.org/10.1117/12.2054073

    Article  CAS  Google Scholar 

  7. He, S., Li, C., Ren, J., Han, Y.: Investigation on alloying element distribution in Cr8Mo2SiV cold-work die steel ingot during homogenization. Steel Res. Int. 89(10), 1800148 (2018). https://doi.org/10.1002/srin.201800148

    Article  CAS  Google Scholar 

  8. Wu, H., Mao, H., Ning, H., Deng, Z., Wu, X.: Friction behavior and self-lubricating mechanism of SLD-MAGIC cold worked die steel during different wear conditions. Metals 13(4), 809 (2023). https://doi.org/10.3390/met13040809

    Article  CAS  Google Scholar 

  9. Tkadletz, M., Schalk, N., Daniel, R., Keckes, J., Czettl, C., Mitterer, C.: Advanced characterization methods for wear resistant hard coatings: a review on recent progress. Surf. Coat. Technol. 285, 31–46 (2016). https://doi.org/10.1016/j.surfcoat.2015.11.016

    Article  CAS  Google Scholar 

  10. Fan, Q.X., Wang, T.G., Liu, Y.M., Wu, Z.H., Zhang, T., Li, T., Yang, Z.-B.: Microstructure and corrosion resistance of the AlTiN coating deposited by arc ion plating. Acta Metall. Sin. (Engl. Lett.) 29(12), 1119–1126 (2016). https://doi.org/10.1007/s40195-016-0497

    Article  CAS  Google Scholar 

  11. Li, H., Sun, P., Cheng, D.: Structure and properties of a-C:H:Si:O films deposited by cage-like hollow cathode discharge on AZ31 alloy. Tribol. Int. 175, 107848 (2022). https://doi.org/10.1016/j.triboint.2022.107848

    Article  CAS  Google Scholar 

  12. Mendibide, C., Fontaine, J., Steyer, P., Esnouf, C.: Dry sliding wear model of nanometer scale multilayered TiN/CrN PVD hard coatings. Tribol. Lett. 17, 779–789 (2004)

    Article  CAS  Google Scholar 

  13. Du, J.W., Chen, L., Chen, J., Du, Y.: Mechanical properties, thermal stability and oxidation resistance of TiN/CrN multilayer coatings. Vacuum 179, 109468 (2020). https://doi.org/10.1016/j.vacuum.2020.109468

    Article  CAS  Google Scholar 

  14. Lomello, F., Yazdi, M.A.P., Sanchette, F., Schuster, F., Tabarant, M., Billard, A.: Temperature dependence of the residual stresses and mechanical properties in TiN/CrN nanolayered coatings processed by cathodic arc deposition. Surf. Coat. Technol. 238, 216–222 (2014). https://doi.org/10.1016/j.surfcoat.2013.10.079

    Article  CAS  Google Scholar 

  15. Carrera, S., Salas, O., Moore, J., Woolverton, A., Sutter, E.: Performance of CrN/MoS2 (Ti) coatings for high wear low friction applications. Surf. Coat. Technol. 167(1), 25–32 (2003). https://doi.org/10.1016/S0257-8972(02)00885-X

    Article  CAS  Google Scholar 

  16. Gorokhovsky, V.I., Bhat, D.G., Shivpuri, R., Kulkarni, K., Bhattacharya, R., Rai, A.: Characterization of large area filtered arc deposition technology: part II—coating properties and applications. Surf. Coat. Technol. 140(3), 215–224 (2001). https://doi.org/10.1016/S0257-8972(01)01023-4

    Article  CAS  Google Scholar 

  17. Bull, S.J., Bhat, D.G., Staia, M.H.: Properties and performance of commercial TiCN coatings. Part 2: tribological performance. Surf. Coat. Technol. 163, 507–514 (2003). https://doi.org/10.1016/S0257-8972(02)00651-5

    Article  Google Scholar 

  18. Jasempoor, F., Elmkhah, H., Imantalab, O., Fattah-Alhosseini, A.: Improving the mechanical, tribological, and electrochemical behavior of AISI 304 stainless steel by applying CrN single layer and Cr/CrN multilayer coatings. Wear 504, 204425 (2022). https://doi.org/10.1016/j.wear.2022.204425

    Article  CAS  Google Scholar 

  19. Kazlauskas, D., Jankauskas, V., Kreivaitis, R., Tučkutė, S.: Wear behaviour of PVD coating strengthened WC-Co cutters during milling of oak-wood. Wear 498, 204336 (2022). https://doi.org/10.1016/j.wear.2022.204336

    Article  CAS  Google Scholar 

  20. Zhang, G.G.: Friction and wear behaviors of carbon-based multilayer coatings sliding against different rubbers in water environment. Tribol. Int. (2013). https://doi.org/10.1016/j.triboint.2013.02.009

    Article  Google Scholar 

  21. Diesselberg, M., Stock, H.-R., Mayr, P.: Friction and wear behaviour of PVD chromium nitride supported carbon coatings. Surf. Coat. Technol. 188, 612–616 (2004). https://doi.org/10.1016/j.surfcoat.2004.07.023

    Article  CAS  Google Scholar 

  22. Wan, S., Pu, J., Li, D., Zhang, B., Tieu, A.K.: Tribological performance of CrN and CrN/GLC coated components for automotive engine applications. J. Alloys Compd. 695, 433–442 (2017). https://doi.org/10.1016/j.jallcom.2016.11.118

    Article  CAS  Google Scholar 

  23. Wang, L., Guan, X., Zhang, G.: Friction and wear behaviors of carbon-based multilayer coatings sliding against different rubbers in water environment. Tribol. Int. 64, 69–77 (2013). https://doi.org/10.1016/j.triboint.2013.02.009

    Article  CAS  Google Scholar 

  24. Yang, J., Zhao, K., Wang, G., Deng, C., Liu, N., Zhang, W., Yang, J.: Influence of coating thickness on microstructure, mechanical and LBE corrosion performance of amorphous AlCrFeTiNb high-entropy alloy coatings. Surf. Coat. Technol. 441, 128502 (2022). https://doi.org/10.1016/j.surfcoat.2022.128502

    Article  CAS  Google Scholar 

  25. Kashkarov, E., Sidelev, D., Pushilina, N., Yang, J., Tang, C., Steinbrueck, M.: Influence of coating parameters on oxidation behavior of Cr-coated zirconium alloy for accident tolerant fuel claddings. Corros. Sci. 203, 110359 (2022). https://doi.org/10.1016/j.corsci.2022.110359

    Article  CAS  Google Scholar 

  26. Marimuthu, K.P., Jeong, U., Han, J., Han, G., Lee, H.: Influence of substrate type and film thickness on the failures of Zr-based thin-film metallic glass under nanoscratch. Wear 494, 204241 (2022). https://doi.org/10.1016/j.wear.2022.204241

    Article  CAS  Google Scholar 

  27. Sidelev, D., Ruchkin, S., Syrtanov, M., Kashkarov, E., Shelepov, I., Malgin, A., Polunin, K., Stoykov, K., Mokrushin, A.: Protective Cr coatings with CrN/Cr multilayers for zirconium fuel claddings. Surf. Coat. Technol. 433, 128131 (2022). https://doi.org/10.1016/j.surfcoat.2022.128131

    Article  CAS  Google Scholar 

  28. Shi, X., Liskiewicz, T.W., Beake, B.D., Chen, J., Wang, C.: Tribological performance of graphite-like carbon films with varied thickness. Tribol. Int. 149, 105586 (2020). https://doi.org/10.1016/j.triboint.2019.01.045

    Article  CAS  Google Scholar 

  29. Liu, D., Benstetter, G., Lodermeier, E.: Surface roughness, mechanical and tribological properties of ultrathin tetrahedral amorphous carbon coatings from atomic force measurements. Thin Solid Films 436(2), 244–249 (2003). https://doi.org/10.1016/S0040-6090(03)00592-3

    Article  CAS  Google Scholar 

  30. Li, X., Xu, S., Ke, P., Wang, A.: Thickness dependence of properties and structure of ultrathin tetrahedral amorphous carbon films: a molecular dynamics simulation. Surf. Coat. Technol. 258, 938–942 (2014). https://doi.org/10.1016/j.surfcoat.2014.07.054

    Article  CAS  Google Scholar 

  31. Wang, Y., Li, J., Lei, S., Chen, J., Xue, Q.: Tribological performances of the graphite-like carbon films deposited with different target powers in ambient air and distilled water. Tribol. Int. 73(73), 17–24 (2014). https://doi.org/10.1016/j.triboint.2013.12.022

    Article  CAS  Google Scholar 

  32. Kinoshita, Y., Murashima, M., Kawachi, M., Ohno, N.: First-principles study of mechanical properties of one-dimensional carbon nanotube intramolecular junctions. Comput. Mater. Sci. 70, 1–7 (2013). https://doi.org/10.1016/j.commatsci.2012.12.033

    Article  CAS  Google Scholar 

  33. Mohiuddin, T., Lombardo, A., Nair, R., Bonetti, A., Savini, G., Jalil, R., Bonini, N., Basko, D., Galiotis, C., Marzari, N.: Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 79(20), 205433 (2009). https://doi.org/10.1103/PhysRevB.79.205433

    Article  CAS  Google Scholar 

  34. Chan, K.T., Neaton, J., Cohen, M.L.: First-principles study of metal adatom adsorption on graphene. Phys. Rev. B 77(23), 235430 (2008). https://doi.org/10.1103/PhysRevB.77.235430

    Article  CAS  Google Scholar 

  35. Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095 (2000). https://doi.org/10.1103/PhysRevB.61.14095

    Article  CAS  Google Scholar 

  36. Yin, D., Peng, X., Yi, Q., Wang, Z.: Impact of residual stress on the adhesion and tensile fracture of TiN/CrN multi-layered coatings from first principles. Physica E (Amsterdam, Neth.) 44(9), 1838–1845 (2012). https://doi.org/10.1016/j.physe.2012.05.008

    Article  CAS  Google Scholar 

  37. Majzoobi, G., Mahmoudi, A., Moradi, S.: Ductile to brittle failure transition of HSLA-100 Steel at high strain rates and subzero temperatures. Eng. Fract. Mech. 158, 179–193 (2016). https://doi.org/10.1016/j.engfracmech.2016.03.001

    Article  Google Scholar 

  38. Du, X.-B., Li, D.-S., Jiang, L., Fang, D.-N.: Experimental study on the low-temperature compression performance of 3D five-directional braided composites applied to extreme environments. Mater. Lett. 324, 132767 (2022). https://doi.org/10.1016/j.matlet.2022.132767

    Article  CAS  Google Scholar 

  39. Batory, D., Jedrzejczak, A., Kaczorowski, W., Szymanski, W., Kolodziejczyk, L., Clapa, M., Niedzielski, P.: Influence of the process parameters on the characteristics of silicon-incorporated a-C:H:SiOx coatings. Surf. Coat. Technol. 271, 112–118 (2015). https://doi.org/10.1016/j.triboint.2013.12.022

    Article  CAS  Google Scholar 

  40. Wang, X., Sui, X., Zhang, S., Yan, M., Yang, J., Hao, J., Liu, W.: Effect of deposition pressures on uniformity, mechanical and tribological properties of thick DLC coatings inside of a long pipe prepared by PECVD method. Surf. Coat. Technol. 375, 150–157 (2019). https://doi.org/10.1002/ep.13996

    Article  CAS  Google Scholar 

  41. Otsubo, F., Era, H., Kishitake, K., Uchida, T.: Properties of Cr3C2-NiCr cermet coating sprayed by high power plasma and high velocity oxy-fuel processes. J. Therm. Spray Technol. 9, 499–504 (2000)

    Article  CAS  Google Scholar 

  42. Yin, Z., Tao, S., Zhou, X., Ding, C.: Evaluating microhardness of plasma sprayed Al2O3 coatings using Vickers indentation technique. J. Phys. D 40(22), 7090 (2007). https://doi.org/10.1088/0022-3727/40/22/034

    Article  CAS  Google Scholar 

  43. Amaratunga, G., Chhowalla, M., Kiely, C., Alexandrou, I., Aharonov, R., Devenish, R.: Hard elastic carbon thin films from linking of carbon nanoparticles. Nature 383(6598), 321–323 (1996). https://doi.org/10.1038/383321a0

    Article  CAS  Google Scholar 

  44. Li, X., Bhushan, B.: Evaluation of fracture toughness of ultra-thin amorphous carbon coatings deposited by different deposition techniques. Thin Solid Films 355, 330–336 (1999). https://doi.org/10.1016/S0040-6090(99)00446-0

    Article  Google Scholar 

  45. Li, X., Bhushan, B.: Measurement of fracture toughness of ultra-thin amorphous carbon films. Thin Solid Films 315(1–2), 214–221 (1998). https://doi.org/10.1016/S0040-6090(97)00788-8

    Article  CAS  Google Scholar 

  46. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992). https://doi.org/10.1557/JMR.1992.1564

    Article  CAS  Google Scholar 

  47. Leyland, A., Matthews, A.: On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear 246(1–2), 1–11 (2000). https://doi.org/10.1016/S0043-1648(00)00488-9

    Article  CAS  Google Scholar 

  48. Chen, J., Li, H., Beake, B.D.: Load sensitivity in repetitive nano-impact testing of TiN and AlTiN coatings. Surf. Coat. Technol. 308, 289–297 (2016). https://doi.org/10.1016/j.surfcoat.2016.05.094

    Article  CAS  Google Scholar 

  49. Wang, L., Zhang, R., Luan, J., Cao, D.: Effect of different deformation on the order degree of coal-based graphite. Energy Source A (2021). https://doi.org/10.1080/15567036.2021.1983084

    Article  Google Scholar 

  50. Li, Z., Guan, X., Wang, Y., Li, J., Cheng, X., Lu, X., Wang, L., Xue, Q.: Comparative study on the load carrying capacities of DLC, GLC and CrN coatings under sliding-friction condition in different environments. Surf. Coat. Technol. 321, 350–357 (2017). https://doi.org/10.1016/j.surfcoat.2017.04.065

    Article  CAS  Google Scholar 

  51. Jiang, H., Jiang, L., Qiao, D., Lu, Y., Wang, T., Cao, Z., Li, T.: Effect of niobium on microstructure and properties of the CoCrFeNbxNi high entropy alloys. J. Mater. Sci. Technol. 33(7), 712–717 (2017). https://doi.org/10.1016/j.jmst.2016.09.016

    Article  CAS  Google Scholar 

  52. Zhang, D., Peng, L., Yi, P., Lai, X.: Electronic transport and corrosion mechanisms of graphite-like nanocrystalline carbon films used on metallic bipolar plates in proton-exchange membrane fuel cells. ACS Appl. Mater. Interfaces 13(3), 3825–3835 (2021). https://doi.org/10.1021/acsami.0c17764

    Article  CAS  Google Scholar 

  53. Siegel, D.J., Hector, L.G., Adams, J.B.: Adhesion, stability, and bonding at metal/metal-carbide interfaces: Al/WC. Surf. Sci. 498(3), 321–336 (2002). https://doi.org/10.1016/S0039-6028(01)01811-8

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Science Fund for Excellent Young Scholars (Oversea), China Postdoctoral Science Foundation Funded Project (Project No. 2021M693415), Jiangsu Provincial Postdoctoral Science Foundation Funded Project (Project No. 2020C340), Jiangsu Provincial Double-Innovation Doctor Program (Project No. 202031063), and China Postdoctoral International Exchange Program (Project No. PC2022061).

Author information

Authors and Affiliations

Authors

Contributions

HL contributed to formal analysis, conceptualization, and writing of the manuscript. RD contributed to investigation, formal analysis, and writing of the original draft. YS contributed to formal analysis. JY contributed to supervision, resources, and funding acquisition. MA contributed to writing, reviewing, & editing of the manuscript.

Corresponding author

Correspondence to Junfeng Yuan.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 230 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Dai, R., Shi, Y. et al. Effect of the GLC Coating Thickness on the Mechanical and Tribological Properties of the CrN/GLC Coatings. Tribol Lett 71, 92 (2023). https://doi.org/10.1007/s11249-023-01768-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01768-7

Keywords

Navigation