Skip to main content
Log in

Molecular Dynamics Investigation on Micro-Friction Behavior of Cylinder Liner-Piston Ring Assembly

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In the vicinity of the top dead center of a diesel engine, the piston rings operate in a low-speed, high-load, and high-temperature environment, which is detrimental to the formation of an effective lubrication oil film. Consequently, it presents significant challenges for predicting the tribological characteristics of the piston ring-cylinder liner friction (PRCL) assembly. This study explores the micro-friction behavior of PRCL assemblies near the top dead center in engines using the molecular dynamics approach. The tribological characteristics of the PRCL, especially the microscopic wear mechanisms, were analyzed under various operating conditions such as ring sliding speed, ring back load, operating temperature, and lubricant supply amount. The liner surface morphology, liner wear, and lubricant film distribution were used to evaluate the tribological characteristics. It was determined that the lubricant supply amount has the most significant impact on the micro-friction behavior of the PRCL assembly.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wu, J., Wang, L., Li, Z., Liu, P., Zhang, C.: Thermal analysis of lubricated three-dimensional contact bodies considering interface roughness. Front. Mech. Eng-Prc. 17(2), 16 (2022)

    Article  Google Scholar 

  2. Shi, X., Lu, X., Feng, Y., Qiu, Z.: Tribo-dynamic analysis for aero ball bearing with 3D measured surface roughness. Eng. Fail. Anal. 131, 105848 (2022)

    Article  Google Scholar 

  3. Cheng, S., Meng, X., Li, R.: Rough surface damping contact model and its space mechanism application. Int. J Mech. Sci. 214, 106899 (2022)

    Article  Google Scholar 

  4. Lyu, B., Zhang, L., Meng, X., Wang, C.: A boundary lubrication model and experimental study considering ZDDP tribofilms on reciprocating friction pairs. Tribol. Lett. 70(2), 65 (2022)

    Article  CAS  Google Scholar 

  5. Dong, Q., Wang, Z., Zhu, D., Meng, F., Xu, L., Zhou, K.: A model of mixed lubrication based on non-normalized discretization and its application for multilayered materials. J Tribol-T. ASME 141(4), 042101 (2019)

    Article  CAS  Google Scholar 

  6. Bair, S., Khonsari, M., Winer, W.O.: High-pressure rheology of lubricants and limitations of the Reynolds equation. Tribol. Int. 31(10), 573–586 (1998)

    Article  CAS  Google Scholar 

  7. Chen, P., Wang, X., Wang, P., He, A.: A mesoscale study of micro-spallation of Cu through coarse-grained molecular dynamics modeling. Int. J Mech. Sci. 220, 107122 (2022)

    Article  Google Scholar 

  8. Pan, Z., Fu, Y., Wei, Y., Yan, X., Luo, H., Li, X.: Deformation mechanisms of TRIP-TWIP medium-entropy alloys via molecular dynamics simulations. Int. J Mech. Sci. 219, 107098 (2022)

    Article  Google Scholar 

  9. Song, W., Yu, Y., Guan, Y.: Role of void shape on shock responses of nanoporous metallic glasses via molecular dynamics simulation. Int. J Mech. Sci. 218, 107076 (2022)

    Article  Google Scholar 

  10. Wang, B., Kang, G., Yu, C., Gu, B., Yuan, W.: Molecular dynamics simulations on one-way shape memory effect of nanocrystalline NiTi shape memory alloy and its cyclic degeneration. Int. J Mech. Sci. 211, 106777 (2022)

    Article  Google Scholar 

  11. Latypov, F.T., Fomin, E.V., Krasnikov, V.S., Mayer, A.E.: Dynamic compaction of aluminum with nanopores of varied shape: MD simulations and machine-learning-based approximation of deformation behavior. Int. J. Plasticity 156, 103363 (2022)

    Article  CAS  Google Scholar 

  12. Ootani, Y., Xu, J., Adach, K., Kubo, M.: First-principles molecular dynamics study of silicon-based ceramics: different tribochemical reaction mechanisms during the running-in period of silicon nitride and silicon carbide. J. Phys. Chem. C 124(37), 20079–20089 (2022)

    Article  Google Scholar 

  13. Li, Z., Wang, J., Yang, Y., et al.: Friction-induced construction of PTFE-anchored MXene heterogeneous lubricating coating and its in-situ tribological transfer mechanism. Chem. Eng. J. 442(2), 136238 (2022)

    Google Scholar 

  14. Ta, T.D., Le, H., Tieu, A.K.: Reactive molecular dynamics study of hierarchical tribochemical lubricant films at elevated temperatures. ACS Appl. Nano Mater. 3(3), 2687–2704 (2020)

    Article  CAS  Google Scholar 

  15. Konishi, M., Washizu, H.: Understanding the effect of the base oil on the physical adsorption process of organic additives using molecular dynamics. Tribol. Int. 149, 105568 (2020)

    Article  CAS  Google Scholar 

  16. Dasic, M., Stankovic, I., Gkagkas, K.: Molecular dynamics investigation of the influence of the shape of the cation on the structure and lubrication properties of ionic liquids. Phys. Chem. Chem. Phys. 21, 4375–4386 (2019)

    Article  CAS  Google Scholar 

  17. Stribeck, R.: Die wesentilchen eigenschaften der gleit und rollenlager, Part 1. Zeitschrift des Vereines Deutscher Ingenieure. 46(37), 1341–1348 (1902)

    Google Scholar 

  18. Stribeck, R.: Die wesentilchen eigenschaften der gleit und rollenlager, Part 2. Zeitschrift des Vereines Deutscher Ingenieure. 46(38), 1432–1438 (1902)

    Google Scholar 

  19. Stribeck, R.: Die wesentilchen eigenschaften der gleit und rollenlager, Part 3. Zeitschrift des Vereines Deutscher Ingenieure. 46(39), 1463–1470 (1902)

    Google Scholar 

  20. Song, J., Zhao, G.: A molecular dynamics study on water lubrication of PTFE sliding against copper. Tribol. Int. 136, 234–239 (2019)

    Article  CAS  Google Scholar 

  21. Zhu, Y., Zhang, Y., Shi, Y., Lu, X., Li, J., Lu, L.: Lubrication behavior of water molecules confined in TiO2 nanoslits: a molecular dynamics study. J. Chem. Eng. Data 61(12), 4023–4030 (2016)

    Article  CAS  Google Scholar 

  22. Shi, J., Chen, J., Sun, K., Sun, J., Han, J., Fang, L.: Water film facilitating plastic deformation of Cu thin film under different nanoindentation modes: a molecular dynamics study. Mater. Chem. Phys. 198, 177–185 (2017)

    Article  CAS  Google Scholar 

  23. Shi, J., Yi, X., Wang, J., Ge, J., Li, H., Fan, X.: Traction behavior and mechanism of molecular level with effects of molecular structure and sliding velocity in boundary lubrication regime: a molecular dynamics study. J. Mol. Liq. 354, 118844 (2022)

    Article  CAS  Google Scholar 

  24. Pan, L., Gao, C.: Confined fluid density of a pentaerythritol tetraheptanoate lubricant investigated using molecular dynamics simulation. Fluid Phase Equilib. 385, 212–218 (2015)

    Article  CAS  Google Scholar 

  25. Xia, L., Long, J., Zhao, Y., Wu, Z., Dai, Z., Wang, L.: Molecular dynamics simulation on the aggregation of lubricant oxidation products. Tribol. Lett. 66, 104 (2018)

    Article  Google Scholar 

  26. Wu, L., Keer, M.L., Lu, J., Song, B., Gu, L.: Molecular dynamics simulations of the rheological properties of graphene-PAO nanofluids. J. Mater. Sci. 53(23), 15969–15976 (2018)

    Article  CAS  Google Scholar 

  27. Ren, J., Zhao, J., Dong, Z., Liu, P.: Molecular dynamics study on the mechanism of AFM-basednanoscratching process with water-layer lubrication. Appl. Surf. Sci. 346, 84–98 (2015)

    Article  CAS  Google Scholar 

  28. Lu, J., Wang, Q.J., Ren, N., Lockwood, E.F.: Correlation between pressure-viscosity coefficient and traction coefficient of the base stocks in traction lubricants: a molecular dynamic approach. Tribol. Int. 134, 328–334 (2019)

    Article  Google Scholar 

  29. Lin, L., Kedzierski, A.M.: Density and viscosity of a polyol ester lubricant: measurement and molecular dynamics simulation. Int. J. Refrig. 118, 188–201 (2020)

    Article  CAS  Google Scholar 

  30. Cunha, M.A.G., Robbins, M.O.: Determination of pressure-viscosity relation of 2,2,4-trimethylhexane by all-atom molecular dynamics simulations. Fluid Phase Equilib. 495, 28–32 (2019)

    Article  Google Scholar 

  31. Jiang, T., Deng, F., Wu, Y., Feng, Q., Zou, S., Huang, F.: Molecular dynamics simulation and experimental study of tribological behavior of dimethyl carbonate-diesel blends in synthetic base oil. Tribol. T. 64(3), 392–402 (2021)

    Article  CAS  Google Scholar 

  32. Zheng, X., Su, L., Deng, G., Zhang, J., Zhu, H., Tieu, A.K.: Study on lubrication characteristics of C4-alkane and nanoparticle during boundary friction by molecular dynamics simulation. Metals 11(9), 1464 (2021)

    Article  CAS  Google Scholar 

  33. Gkagkas, K., Ponnuchamy, V., Dasic, M., Stankovic, I.: Molecular dynamics investigation of a model ionic liquid lubricant for automotive applications. Tribol. Int. 113, 83–91 (2017)

    Article  CAS  Google Scholar 

  34. Zhang, L., Lu, B., Wu, Y., et al.: Molecular dynamics simulation and experimental study on the lubrication of graphene additive films. P. I. Mech. Eng. J-J. Eng. 234(12), 1957–1972 (2020)

    CAS  Google Scholar 

  35. Liu, P., Yu, H., Ren, N., Lockwood, F.E., Wang, Q.J.: Pressure-viscosity coefficient of hydrocarbon base oil through molecular dynamics simulations. Tribol. Lett. 60(3), 34 (2015)

    Article  Google Scholar 

  36. Washizu, H., Ohmori, T., Suzuki, A.: Molecular origin of limiting shear stress of elastohydrodynamic lubrication oil film studied by molecular dynamics. Chem. Phys. Lett. 678, 1–4 (2017)

    Article  CAS  Google Scholar 

  37. Bai, X., Dong, Q., Zheng, H., Zhou, K.: Modelling of non-newtonian starved thermal-elastohydrodynamic lubrication of heterogeneous materials in impact motion. Acta Mech. Solida Sin. 34(6), 954–976 (2021)

    Article  Google Scholar 

  38. Bai, X., Dong, Q., Zheng, H., Zhou, K.: A finite element model for non-newtonian starved thermal-elastohydrodynamic lubrication of 3D line contact. Int. J. Appl. Mech. 13(9), 2150107 (2022)

    Article  Google Scholar 

  39. Wu, S., Zhang, P., Wei, H., Chen, L.: Influence of surface texture parameters on friction characteristics under starved lubrication. Pol. Marit. Res. 27(2), 96–106 (2020)

    Article  Google Scholar 

  40. Li, S., Masse, D.: On the flash temperature under the starved lubrication condition of a line contact. Tribol. Int. 136, 173–181 (2019)

    Article  Google Scholar 

  41. Li, C., Tang, W., Tang, X., Yang, L., Bai, L.: A molecular dynamics study on the synergistic lubrication mechanisms of graphene/water-based lubricant systems. Tribol. Int. 167, 107356 (2022)

    Article  CAS  Google Scholar 

  42. Yeon, J., van Duin, A.C.T., Kim, S.H.: Effects of water on tribochemical wear of silicon oxide interface: molecular dynamics (MD) study with reactive force field (ReaxFF). Langmuir 32(4), 1018–1026 (2016)

    Article  CAS  Google Scholar 

  43. Chen, H., Zhang, G., Lu, Z., Bai, L.: Frictional behaviors of diamond-like carbon films under water lubrication: a molecular dynamics study. Tribol. Int. 153, 106609 (2021)

    Article  CAS  Google Scholar 

  44. Rullich, M., Weiss, V.C., Frauenheim, T.: Molecular dynamics simulations of the tribological behaviour of a water-lubricated amorphous carbon-fluorine PECVD coating. Model. Simul. Mater. Sc. 21(5), 055027 (2013)

    Article  Google Scholar 

  45. Li, T., Jiao, B., Ma, X., Lu, X., Qiao, Z.: Optimization study of oil-feed parameters to improve the ring pack lubrication performance for a two-stroke marine diesel engine. Eng. Fail. Anal. 137, 106234 (2022)

    Article  Google Scholar 

  46. Li, T., Ma, X., Lu, X., et al.: Lubrication analysis for the piston ring of a two-stroke marine diesel engine taking account of the oil supply. Int. J. Engine Res. 22(3), 949–962 (2021)

    Article  CAS  Google Scholar 

  47. Bolander, N.W.: Deterministic modeling of honed cylinder liner friction. Tribol. T. 50(2), 248–256 (2007)

    Article  CAS  Google Scholar 

  48. Lyu, X., Jiao, B., Wang, Y., et al.: An improved contact model considered the effect of boundary lubrication regime on piston ring-liner contact for the two-stroke marine engines from the perspective of the Stribeck curve. P. I. Mech. Eng. C-J Mec. 236(5), 2602–2616 (2022)

    Article  Google Scholar 

  49. Gu, C., Meng, X., Xie, Y., Zhang, D.: The influence of surface texturing on the transition of the lubrication regimes between a piston ring and a cylinder liner. Int. J. Engine Res. 18(8), 785–796 (2018)

    Article  Google Scholar 

  50. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  CAS  Google Scholar 

  51. Wang, W., Zhang, X., Li, Y., Huang, R., Xu, J., Yang, L.: Effects of molecular structures of poly α-olefin mixture on nano-scale thin film lubrication. Mater. Today Commun. 25, 101500 (2020)

    Article  CAS  Google Scholar 

  52. Kioupis, L.I., Maginn, E.J.: Molecular Simulation of poly-α-olefin synthetic lubricants: impact of molecular architecture on performance properties. J. Phys. Chem. B 103(49), 10781–10790 (1999)

    Article  CAS  Google Scholar 

  53. BIOVIA Materials Studio - BIOVIA - Dassault systèmes®. San Diego, 2014

  54. Mendelev, M.I., Han, S., Srolovitz, D.J., Ackland, G.J., Sun, D.Y., Asta, M.: Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos. Mag. 83(35), 3977–3994 (2003)

    Article  CAS  Google Scholar 

  55. Choi, W.M., Kim, Y., Seol, D., Lee, B.J.: Modified embedded-atom method interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems. Comp. Mater. Sci. 130, 121–129 (2017)

    Article  CAS  Google Scholar 

  56. Lorentz, H.A.: Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase. Ann. Phys. 248(1), 127–136 (1881)

    Article  Google Scholar 

  57. Berthelot, D.: Comptes rendus hebdomadaires des seances de l’academie des sciences. Compt. Rendus. Acad. Sci. 126, 1703–1855 (1898)

    Google Scholar 

  58. Halicioǧlu, T., Pound, G.M.: Calculation of potential energy parameters from crystalline state properties. Phys. Status Solidi A. 30(2), 619–623 (1975)

    Article  Google Scholar 

  59. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool modelling. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  Google Scholar 

  60. Chen, W., Liu, D., Xu, J., Huang, R., Chen, Z., Du, F., Yan, Z.: Modeling of gas pressure and dynamic behavior of the piston ring pack for the two-stroke opposed-piston engine. J. Tribol-T. ASME 141(1), 012203 (2019)

    Article  Google Scholar 

  61. Zhang, L., Tanaka, H.: Towards a deeper understanding of wear and friction on the atomic scalem-a molecular dynamics analysis. Wear 211(1), 44–53 (1997)

    Article  CAS  Google Scholar 

  62. Yang, Y., Huang, L., Shi, Y.: Adhesion suppresses atomic wear in single-asperity sliding. Wear 352–353, 31–41 (2016)

    Article  Google Scholar 

Download references

Funding

This work was supported by the Shandong Provincial Natural Science Foundation (ZR2022QE183, ZR2020ZD29, ZR2021JQ20, ZR2021ME168), the National Key R&D Program of China (No. 2022YFB3706204), and the Taishan Scholars Program of Shandong Province.

Author information

Authors and Affiliations

Authors

Contributions

TL contributed to the conception of the study; TL and JW performed the research method; TL and CG built the model and carried out the calculations; XM and YY collated the calculation results and drew pictures; LW and HT carried out data analysis; TL and JW edited the first draft. ZQ and HT did proofreading and reviewing.

Corresponding authors

Correspondence to Zhuhui Qiao or Huaguo Tang.

Ethics declarations

Competing interest

The authors declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence this work, and there is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled “Molecular dynamics investigation on micro-friction behavior of cylinder liner-piston ring assembly”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Wu, J., Ge, C. et al. Molecular Dynamics Investigation on Micro-Friction Behavior of Cylinder Liner-Piston Ring Assembly. Tribol Lett 71, 78 (2023). https://doi.org/10.1007/s11249-023-01749-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01749-w

Keywords

Navigation