Skip to main content
Log in

Linking Molecular Structure and Lubrication Mechanisms in Tetraalkylammonium Orthoborate Ionic Liquids

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

While ionic liquids (ILs) have gained wide interest as potential alternative lubricants able to meet the requirements of next-generation tribological systems owing to their unique physico-chemical properties and promising lubricating behavior, our understanding of the mechanisms by which ILs reduce friction and/or wear is still elusive. Here, we combine macroscale tribological experiments with surface-analytical measurements to shed light on the lubrication mechanisms of a class of halogen-free ILs, namely tetraalkylammonium orthoborate ILs, at steel/steel sliding contacts. The tribological results indicate an improvement of the friction-reducing properties of these ILs as the length of the alkyl chains attached to ammonium cations increases. X-ray photoelectron spectroscopy analyses provide further evidence for the dependence of the lubrication mechanism of tetraalkylammonium orthoborate ILs on the IL structure. In the case of tetraalkylammonium orthoborate ILs with asymmetric ammonium cations containing a long alkyl chain, no sacrificial tribofilms were formed on steel surfaces, thus suggesting that the friction-reducing ability of these ILs originates from their propensity to undergo a pressure-induced morphological change at the sliding interface that leads to the generation of a lubricious, solid-like layered structure. Conversely, the higher friction response observed in tribological tests performed with tetraalkylammonium orthoborate ILs containing more symmetric ammonium cations and short alkyl chains is proposed to be due to the inability of this IL to create a transient interfacial layer owing to the reduced van der Waals interactions between the cationic alkyl chains. The resulting hard/hard contact between the sliding surfaces is proposed to lead to the cleavage of boron-oxygen bonds in the presence of water to form species that then adsorb onto the steel surface, including trivalent borate esters and oxalic acid from the decomposition of orthoborate anions, as well as tertiary amines from the degradation of alkylammonium cations induced by hydroxides released during the orthoborate decomposition reaction. The results of this work not only establish links between the molecular structure of a class of halogen-free ILs, their lubricating performance, and lubrication mechanism, but also provide evidence for the existence of multiple mechanisms underpinning the promising lubricating properties of ILs in general.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Pirro, D.M., Webster, M., Daschner, E.: Lubrication fundamentals : ExxonMobil Third edit. CRC Press, Taylor & Francis Group, CRC Press is an imprint of the Taylor & Francis Group, an informa business, Boca Raton (2016)

    Book  Google Scholar 

  2. Spikes, H.: Low- and zero-sulphated ash, phosphorus and sulphur anti-wear additives for engine oils. Lubr. Sci. 20, 103–136 (2008)

    Article  CAS  Google Scholar 

  3. Tung, S.C.C., McMillan, M.L.L.: Automotive tribology overview of current advances and challenges for the future. Tribol. Int. 37, 517–536 (2004). https://doi.org/10.1016/j.triboint.2004.01.013

    Article  CAS  Google Scholar 

  4. Olree, R.M., McMillan, M.L.: How Much ZDP is Enough? SAE Tech. Pap, USA (2004)

    Google Scholar 

  5. Mangolini, F., Rossi, A., Spencer, N.: Chemical reactivity of triphenyl phosphorothionate ( TPPT ) with Iron: an ATR/FT-IR and XPS investigation. J. Phys. (2010). https://doi.org/10.1021/jp107617d

    Article  Google Scholar 

  6. Mangolini, F., Rossi, A., Spencer, N.: Tribochemistry of triphenyl phosphorothionate (TPPT) by In situ attenuated total reflection (ATR/FT-IR) tribometry. J. Phys. (2012). https://doi.org/10.1021/jp209697a

    Article  Google Scholar 

  7. Heuberger, R., Rossi, A., Spencer, N.D.: Reactivity of alkylated phosphorothionates with steel: a tribological and surface-analytical study. Lubr. Sci. 20, 79–102 (2008). https://doi.org/10.1002/ls.56

    Article  CAS  Google Scholar 

  8. Rossi, A., Piras, F.M., Kim, D., Gellman, A.J., Spencer, N.D.: Surface reactivity of tributyl thiophosphate: effects of temperature and mechanical stress. Tribol. Lett. 23, 197–208 (2006). https://doi.org/10.1007/s11249-006-9051-6

    Article  CAS  Google Scholar 

  9. Shah, F.U., Glavatskih, S., Antzutkin, O.N.: Boron in tribology: from borates to ionic liquids. Tribol. Lett. 51, 281–301 (2013). https://doi.org/10.1007/s11249-013-0181-3

    Article  CAS  Google Scholar 

  10. Kreuz, K.L., Fein, R.S., Dundy, M.: EP Films from borate lubricants. A S L E Trans. 10, 67–76 (1967). https://doi.org/10.1080/05698196708972166

    Article  CAS  Google Scholar 

  11. Liu, W., Jin, Z., Xue, Q.: The performance and antiwear mechanism of S-containing organic borate as an oil additive. Lubr. Sci. 7, 49–60 (1994). https://doi.org/10.1002/ls.3010070105

    Article  CAS  Google Scholar 

  12. Liu, W., Xue, Q., Zhang, X., Wang, H.: Effect of molecular structure of organic borates on their friction and wear properties. Lubr. Sci. 6, 41–49 (1993). https://doi.org/10.1002/ls.3010060104

    Article  CAS  Google Scholar 

  13. Philippon, D., De Barros-Bouchet, M.I., Lerasle, O., Le Mogne, T., Martin, J.M.: Experimental simulation of tribochemical reactions between borates esters and steel surface. Tribol. Lett. 41, 73–82 (2011). https://doi.org/10.1007/s11249-010-9685-2

    Article  CAS  Google Scholar 

  14. Pearson, R.G.: Hard and soft acids and bases, HSAB, part I, fundamental principles. J. Chem. Educ. 45, 581–586 (1968)

    Article  CAS  Google Scholar 

  15. Pearson, R.G.: Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963). https://doi.org/10.1021/ja00905a001

    Article  CAS  Google Scholar 

  16. Pearson, R.G., Songstad, J.: Application of the principle of hard and soft acids and bases to organic chemistry. J. Am. Chem. Soc. 89, 1827–1836 (1967). https://doi.org/10.1021/ja00984a014

    Article  CAS  Google Scholar 

  17. Pearson, R.G.: Chemical Hardness. John Wiley & Sons, New York (1997)

    Book  Google Scholar 

  18. Yao, J.B., Dong, J.X.: Improvement of hydrolytic stability of borate esters used as lubricant additives. Lubr. Eng. 51, 475–479 (1995)

    CAS  Google Scholar 

  19. Zheng, Z., Shen, G., Wan, Y., Cao, L., Xu, X., Yue, Q., Sun, T.: Synthesis, hydrolytic stability and tribological properties of novel borate esters containing nitrogen as lubricant additives. Wear. 222, 135–144 (1998). https://doi.org/10.1016/S0043-1648(98)00323-8

    Article  CAS  Google Scholar 

  20. Yao, J.: Evaluation of sodium acetylacetonate as a synergist for arylamine antioxidants in synthetic lubricants. Tribol. Int. 30, 795–799 (1997). https://doi.org/10.1016/S0301-679X(97)00046-7

    Article  CAS  Google Scholar 

  21. Junbin, Y.: Antiwear function and mechanism of borate containing nitrogen. Tribol. Int. 30, 387–389 (1997). https://doi.org/10.1016/S0301-679X(96)00060-6

    Article  Google Scholar 

  22. Sharma, B.K., Doll, K.M., Heise, G.L., Myslinska, M., Erhan, S.Z.: Antiwear additive derived from soybean oil and boron utilized in a gear oil formulation. Ind. Eng. Chem. Res. 51, 11941–11945 (2012). https://doi.org/10.1021/ie301519r

    Article  CAS  Google Scholar 

  23. Li, W., Wu, Y., Wang, X., Liu, W.: Tribological study of boron-containing soybean lecithin as environmentally friendly lubricant additive in synthetic base fluids. Tribol. Lett. 47, 381–388 (2012). https://doi.org/10.1007/s11249-012-9994-8

    Article  CAS  Google Scholar 

  24. Zhou, Y., Qu, J.: Ionic Liquids as lubricant additives: a review. ACS Appl Mater Interfaces. 9, 3209–3222 (2017). https://doi.org/10.1021/acsami.6b12489

    Article  CAS  Google Scholar 

  25. A. Somers, P. Howlett, D. MacFarlane, M. Forsyth, A Review of Ionic Liquid Lubricants, Lubricants. 1 (2013) 3–21. http://www.mdpi.com/2075-4442/1/1/3.

  26. Li, Z., Mangolini, F.: Recent advances in nanotribology of ionic liquids. Exp. Mech. (2021). https://doi.org/10.1007/s11340-021-00732-7

    Article  Google Scholar 

  27. Espinosa-Marzal, R.M., Han, M., Arcifa, A., Spencer, N.D., Rossi, A.: Ionic liquids at interfaces and their tribological behavior. Ref. Modul. Chem. Mol. Sci. Chem. Eng. (2017). https://doi.org/10.1016/B978-0-12-409547-2.13857-0

    Article  Google Scholar 

  28. Lhermerout, R., Diederichs, C., Perkin, S.: Are Ionic Liquids Good Boundary Lubricants? A Molecular Perspective. Lubricants. 6(1), 9 (2018). https://doi.org/10.3390/lubricants6010009

    Article  Google Scholar 

  29. MacFarlane, D.R., Kar, M., Pringle, J.M.: An Introduction to Ionic Liquids. In: MacFarlane, D.R., Kar, M., Pringle, J.M. (eds.) Fundamentals of Ionic Liquids: From Chemistry to Applicatio, pp. 1–25. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2017)

    Chapter  Google Scholar 

  30. Minami, I.: Ionic liquids in tribology. Molecules 14, 2286–2305 (2009). https://doi.org/10.3390/molecules14062286

    Article  CAS  Google Scholar 

  31. Yu, B., Bansal, D.G., Qu, J., Sun, X., Luo, H., Dai, S., Blau, P.J., Bunting, B.G., Mordukhovich, G., Smolenski, D.J.: Oil-miscible and non-corrosive phosphonium-based ionic liquids as candidate lubricant additives. Wear 289, 58–64 (2012). https://doi.org/10.1016/J.WEAR.2012.04.015

    Article  CAS  Google Scholar 

  32. Qu, J., Truhan, J.J., Dai, S., Luo, H., Blau, P.J.: Ionic liquids with ammonium cations as lubricants or additives. Tribol. Lett. 22, 207–214 (2006). https://doi.org/10.1007/s11249-006-9081-0

    Article  CAS  Google Scholar 

  33. Kamimura, H., Kubo, T., Minami, I., Mori, S.: Effect and mechanism of additives for ionic liquids as new lubricants. Tribol. Int. 40, 620–625 (2007). https://doi.org/10.1016/j.triboint.2005.11.009

    Article  CAS  Google Scholar 

  34. Hjalmarsson, N., Wallinder, D., Glavatskih, S., Atkin, R., Aastrup, T., Rutland, M.W.: Weighing the surface charge of an ionic liquid. Nanoscale 7, 16039–16045 (2015). https://doi.org/10.1039/c5nr03965g

    Article  CAS  Google Scholar 

  35. Pilkington, G.A., Harris, K., Bergendal, E., Reddy, A.B., Palsson, G.K., Vorobiev, A., Antzutkin, O.N., Glavatskih, S., Rutland, M.W.: Electro-responsivity of ionic liquid boundary layers in a polar solvent revealed by neutron reflectance. J. Chem. Phys. 148, 193806 (2018). https://doi.org/10.1063/1.5001551

    Article  CAS  Google Scholar 

  36. Hjalmarsson, N., Bergendal, E., Wang, Y.-L., Munavirov, B., Wallinder, D., Glavatskih, S., Aastrup, T., Atkin, R., Furó, I., Rutland, M.W.: Electro-responsive surface composition and kinetics of an ionic liquid in a polar oil. Langmuir 35, 15692–15700 (2019). https://doi.org/10.1021/acs.langmuir.9b02119

    Article  CAS  Google Scholar 

  37. Watanabe, S., Pilkington, G.A., Oleshkevych, A., Pedraz, P., Radiom, M., Welbourn, R., Glavatskih, S., Rutland, M.W.: Interfacial structuring of non-halogenated imidazolium ionic liquids at charged surfaces: effect of alkyl chain length. Phys. Chem. Chem. Phys. 22, 8450–8460 (2020). https://doi.org/10.1039/D0CP00360C

    Article  CAS  Google Scholar 

  38. Li, H., Wood, R.J., Rutland, M.W., Atkin, R.: An ionic liquid lubricant enables superlubricity to be “switched on” in situ using an electrical potential. Chem. Commun. 50, 4368 (2014)

    Article  CAS  Google Scholar 

  39. Cooper, P.K., Li, H., Rutland, M.W., Webber, G.B., Atkin, R.: Tribotronic control of friction in oil-based lubricants with ionic liquid additives. Phys. Chem. Chem. Phys. 18, 23657–23662 (2016). https://doi.org/10.1039/C6CP04405K

    Article  CAS  Google Scholar 

  40. Li, H., Rutland, M.W., Atkin, R.: Ionic liquid lubrication: influence of ion structure, surface potential and sliding velocity. Phys. Chem. Chem. Phys. 15, 14616–14623 (2013). https://doi.org/10.1039/C3CP52638K

    Article  CAS  Google Scholar 

  41. Ye, C., Liu, W., Chen, Y., Yu, L.: Room-temperature ionic liquids: a novel versatile lubricant. Chem. Commun. (2001). https://doi.org/10.1039/B106935G

    Article  Google Scholar 

  42. Otero, I., López, E.R., Reichelt, M., Fernández, J.: Friction and anti-wear properties of two tris(pentafluoroethyl)trifluorophosphate ionic liquids as neat lubricants. Tribol. Int. 70, 104–111 (2014). https://doi.org/10.1016/j.triboint.2013.10.002

    Article  CAS  Google Scholar 

  43. Wang, H., Lu, Q., Ye, C., Liu, W., Cui, Z.: Friction and wear behaviors of ionic liquid of alkylimidazolium hexafluorophosphates as lubricants for steel/steel contact. Wear. 256, 44–48 (2004). https://doi.org/10.1016/S0043-1648(03)00255-2

    Article  CAS  Google Scholar 

  44. Lu, Q., Wang, H., Ye, C., Liu, W., Xue, Q.: Room temperature ionic liquid 1-ethyl-3-hexylimidazolium-bis(trifluoromethylsulfonyl)-imide as lubricant for steel–steel contact. Tribol. Int. 37, 547–552 (2004). https://doi.org/10.1016/j.triboint.2003.12.003

    Article  CAS  Google Scholar 

  45. Hernández Battez, A., Bartolomé, M., Blanco, D., Viesca, J.L., Fernández-González, A., González, R.: Phosphonium cation-based ionic liquids as neat lubricants: physicochemical and tribological performance. Tribol. Int. 95, 118–131 (2016). https://doi.org/10.1016/j.triboint.2015.11.015

    Article  CAS  Google Scholar 

  46. García, A., González, R., Hernández Battez, A., Viesca, J.L., Monge, R., Fernández-González, A., Hadfield, M.: Ionic liquids as a neat lubricant applied to steel–steel contacts. Tribol. Int. 72, 42–50 (2014). https://doi.org/10.1016/j.triboint.2013.12.007

    Article  CAS  Google Scholar 

  47. Munavirov, B., Black, J.J., Shah, F.U., Leckner, J., Rutland, M.W., Harper, J.B., Glavatskih, S.: The effect of anion architecture on the lubrication chemistry of phosphonium orthoborate ionic liquids. Sci. Rep. 11, 24021 (2021). https://doi.org/10.1038/s41598-021-02763-5

    Article  CAS  Google Scholar 

  48. Qu, J., Blau, P.J., Dai, S., Luo, H., Meyer, H.M.: Ionic liquids as novel lubricants and additives for diesel engine applications. Tribol. Lett. 35, 181–189 (2009). https://doi.org/10.1007/s11249-009-9447-1

    Article  CAS  Google Scholar 

  49. Freire, M.G., Neves, C.M.S.S., Marrucho, I.M., Coutinho, J.A.P., Fernandes, A.M.: Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids. J. Phys. Chem. A. 114, 3744–3749 (2010). https://doi.org/10.1021/jp903292n

    Article  CAS  Google Scholar 

  50. Petkovic, M., Seddon, K.R., Rebelo, L.P., Silva Pereira, C.: Ionic liquids: a pathway to environmental acceptability. Chem. Soc. Rev. 40, 1383–1403 (2011). https://doi.org/10.1039/c004968a

    Article  CAS  Google Scholar 

  51. Cvjetko Bubalo, M., Radošević, K., Radojčić Redovniković, I., Halambek, J., Gaurina Srček, V.: A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicol. Environ. Saf. 99, 1–12 (2014). https://doi.org/10.1016/j.ecoenv.2013.10.019

    Article  CAS  Google Scholar 

  52. Stolte, S., Steudte, S., Areitioaurtena, O., Pagano, F., Thöming, J., Stepnowski, P., Igartua, A.: Ionic liquids as lubricants or lubrication additives: an ecotoxicity and biodegradability assessment. Chemosphere 89, 1135–1141 (2012). https://doi.org/10.1016/J.CHEMOSPHERE.2012.05.102

    Article  CAS  Google Scholar 

  53. Yan, J., Mangolini, F.: Engineering encapsulated ionic liquids for next-generation applications. RSC Adv. 11, 36273–36288 (2021). https://doi.org/10.1039/d1ra05034f

    Article  CAS  Google Scholar 

  54. Guo, H., Iglesias, P.: Tribological behavior of ammonium-based protic ionic liquid as lubricant additive. Friction. 9, 169–178 (2021). https://doi.org/10.1007/s40544-020-0378-z

    Article  CAS  Google Scholar 

  55. Patel, A., Guo, H., Iglesias, P.: Study of the lubricating ability of protic ionic liquid on an aluminum–steel contact. Lubricants. 6(3), 66 (2018). https://doi.org/10.3390/lubricants6030066

    Article  Google Scholar 

  56. Khan, A., Yasa, S.R., Gusain, R., Khatri, O.P.: Oil-miscible, halogen-free, and surface-active lauryl sulphate-derived ionic liquids for enhancement of tribological properties. J. Mol. Liq. 318, 114005 (2020). https://doi.org/10.1016/J.MOLLIQ.2020.114005

    Article  CAS  Google Scholar 

  57. Gusain, R., Khatri, O.P.: Halogen-free ionic liquids: Effect of chelated orthoborate anion structure on their lubrication properties. RSC Adv. 5, 25287–25294 (2015). https://doi.org/10.1039/c5ra03092g

    Article  CAS  Google Scholar 

  58. Shah, F.U., Glavatskih, S., MacFarlane, D.R., Somers, A.E., Forsyth, M., Antzutkin, O.N.: Novel halogen-free chelated orthoborate-phosphonium ionic liquids: synthesis and tribophysical properties. Phys. Chem. Chem. Phys. 13, 12865–12873 (2011). https://doi.org/10.1039/c1cp21139k

    Article  CAS  Google Scholar 

  59. Wu, J., Lu, X., Feng, X., Shi, Y.: Halogen-free ionic liquids as excellent lubricants for PEEK-stainless steel contacts at elevated temperatures. Tribol. Int. 104, 1–9 (2016). https://doi.org/10.1016/j.triboint.2016.08.009

    Article  CAS  Google Scholar 

  60. Khatri, P.K., Joshi, C., Thakre, G.D., Jain, S.L.: Halogen-free ammonium-organoborate ionic liquids as lubricating additives: the effect of alkyl chain lengths on the tribological performance. New J. Chem. 40, 5294–5299 (2016). https://doi.org/10.1039/c5nj02225h

    Article  CAS  Google Scholar 

  61. Zhou, Y., Dyck, J., Graham, T.W., Luo, H., Leonard, D.N., Qu, J.: Ionic liquids composed of phosphonium cations and organophosphate, carboxylate, and sulfonate anions as lubricant antiwear additives. Langmuir 30, 13301–13311 (2014). https://doi.org/10.1021/la5032366

    Article  CAS  Google Scholar 

  62. Gusain, R., Dhingra, S., Khatri, O.P.: Fatty-acid-constituted halogen-free ionic liquids as renewable, environmentally friendly, and high-performance lubricant additives. Ind. Eng. Chem. Res. 55, 856–865 (2016). https://doi.org/10.1021/acs.iecr.5b03347

    Article  CAS  Google Scholar 

  63. Gusain, R., Singh, R., Sivakumar, K.L.N., Khatri, O.P.: Halogen-free imidazolium/ammonium-bis(salicylato)borate ionic liquids as high performance lubricant additives. RSC Adv. 4, 1293–1301 (2014). https://doi.org/10.1039/C3RA43052A

    Article  CAS  Google Scholar 

  64. Gusain, R., Bakshi, P.S., Panda, S., Sharma, O.P., Gardas, R., Khatri, O.P.: Physicochemical and tribophysical properties of trioctylalkylammonium bis(salicylato)borate (N888n-BScB) ionic liquids: effect of alkyl chain length. Phys. Chem. Chem. Phys. 19, 6433–6442 (2017). https://doi.org/10.1039/C6CP05990B

    Article  CAS  Google Scholar 

  65. Taher, M., Shah, F.U., Filippov, A., de Baets, P., Glavatskih, S., Antzutkin, O.N.: Halogen-free pyrrolidinium bis(mandelato)borate ionic liquids: some physicochemical properties and lubrication performance as additives to polyethylene glycol. RSC Adv. 4, 30617–30623 (2014). https://doi.org/10.1039/C4RA02551B

    Article  CAS  Google Scholar 

  66. Qu, J., Bansal, D.G., Yu, B., Howe, J.Y., Luo, H., Dai, S., Li, H., Blau, P.J., Bunting, B.G., Mordukhovich, G., Smolenski, D.J.: Antiwear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive. ACS Appl. Mater. Interfaces. 4, 997–1002 (2012). https://doi.org/10.1021/am201646k

    Article  CAS  Google Scholar 

  67. Qu, J., Luo, H., Chi, M., Ma, C., Blau, P.J., Dai, S., Viola, M.B.: Comparison of an oil-miscible ionic liquid and ZDDP as a lubricant anti-wear additive. Tribol. Int. 71, 88–97 (2014). https://doi.org/10.1016/j.triboint.2013.11.010

    Article  CAS  Google Scholar 

  68. González, R., Viesca, J.L., Battez, A.H., Hadfield, M., Fernández-González, A., Bartolomé, M.: Two phosphonium cation-based ionic liquids as lubricant additive to a polyalphaolefin base oil. J. Mol. Liq. 293, 111536 (2019). https://doi.org/10.1016/j.molliq.2019.111536

    Article  CAS  Google Scholar 

  69. Fu, X., Sun, L., Zhou, X., Li, Z., Ren, T.: Tribological study of oil-miscible quaternary ammonium phosphites ionic liquids as lubricant additives in PAO. Tribol. Lett. 60, 23 (2015). https://doi.org/10.1007/s11249-015-0596-0

    Article  CAS  Google Scholar 

  70. Fan, M., Yang, D., Wang, X., Liu, W., Fu, H.: DOSS– based QAILs: as both neat lubricants and lubricant additives with excellent tribological properties and good detergency. Ind. Eng. Chem. Res. 53, 17952–17960 (2014). https://doi.org/10.1021/ie502849w

    Article  CAS  Google Scholar 

  71. Barnhill, W.C., Qu, J., Luo, H., Meyer, H.M., Ma, C., Chi, M., Papke, B.L.: Phosphonium-organophosphate ionic liquids as lubricant additives: effects of cation structure on physicochemical and tribological characteristics. ACS Appl. Mater. Interfaces. 6, 22585–22593 (2014). https://doi.org/10.1021/am506702u

    Article  CAS  Google Scholar 

  72. Barnhill, W.C., Luo, H., Meyer, H.M., Ma, C., Chi, M., Papke, B.L., Qu, J.: Tertiary and quaternary ammonium-phosphate ionic liquids as lubricant additives. Tribol. Lett. (2016). https://doi.org/10.1007/s11249-016-0707-6

    Article  Google Scholar 

  73. Perkin, S., Crowhurst, L., Niedermeyer, H., Welton, T., Smith, A.M., Gosvami, N.N.: Self-assembly in the electrical double layer of ionic liquids. Chem Commun. 47, 6572–6574 (2011). https://doi.org/10.1039/C1CC11322D

    Article  CAS  Google Scholar 

  74. Werzer, O., Atkin, R.: Interactions of adsorbed poly(ethylene oxide) mushrooms with a bare silica-ionic liquid interface. Phys. Chem. Chem. Phys. 13, 13479–13485 (2011). https://doi.org/10.1039/C1CP20174C

    Article  CAS  Google Scholar 

  75. Espinosa-Marzal, R.M., Arcifa, A., Rossi, A., Spencer, N.D.D.: Microslips to “avalanches” in confined, molecular layers of ionic liquids. J. Phys. Chem. Lett. 5, 179–184 (2013). https://doi.org/10.1021/jz402451v

    Article  CAS  Google Scholar 

  76. Smith, A.M., Lovelock, K.R.J., Gosvami, N.N., Welton, T., Perkin, S.: Quantized friction across ionic liquid thin films. Phys. Chem. Chem. Phys. 15, 15317–15320 (2013). https://doi.org/10.1039/c3cp52779d

    Article  CAS  Google Scholar 

  77. Li, Z., Morales-Collazo, O., Chrostowski, R., Brennecke, J.F., Mangolini, F.: In situ nanoscale evaluation of pressure-induced changes in structural morphology of phosphonium phosphate ionic liquid at single-asperity contacts. RSC Adv. 12, 413–419 (2021). https://doi.org/10.1039/d1ra08026a

    Article  CAS  Google Scholar 

  78. Li, Z., Dolocan, A., Morales-Collazo, O., Sadowski, J.T., Celio, H., Chrostowski, R., Brennecke, J.F., Mangolini, F.: Lubrication mechanism of phosphonium phosphate ionic liquid in nanoscale single-asperity sliding contacts. Adv. Mater. Interfaces. 7, 2000426 (2020). https://doi.org/10.1002/admi.202000426

    Article  CAS  Google Scholar 

  79. Qu, J., Blau, P.J., Dai, S., Luo, H., Meyer, H.M., Truhan, J.J.: Tribological characteristics of aluminum alloys sliding against steel lubricated by ammonium and imidazolium ionic liquids. Wear. 267, 1226–1231 (2009). https://doi.org/10.1016/j.wear.2008.12.038

    Article  CAS  Google Scholar 

  80. Guo, W., Zhou, Y., Sang, X., Leonard, D.N., Qu, J., Poplawsky, J.D.: Atom probe tomography unveils formation mechanisms of wear-protective tribofilms by ZDDP, ionic liquid, and their combination. ACS Appl Mater Interfaces. 9, 23152–23163 (2017). https://doi.org/10.1021/acsami.7b04719

    Article  CAS  Google Scholar 

  81. Qu, J., Chi, M., Meyer, H.M., Blau, P.J., Dai, S., Luo, H.: Nanostructure and composition of Tribo-boundary films formed in ionic liquid lubrication. Tribol. Lett. 43, 205–211 (2011). https://doi.org/10.1007/s11249-011-9800-z

    Article  CAS  Google Scholar 

  82. Minami, I., Inada, T., Sasaki, R., Nanao, H.: Tribo-chemistry of phosphonium-derived ionic liquids. Tribol. Lett. 40, 225–235 (2010). https://doi.org/10.1007/s11249-010-9626-0

    Article  CAS  Google Scholar 

  83. Zhou, F., Liang, Y., Liu, W.: Ionic liquid lubricants: designed chemistry for engineering applications. Chem. Soc. Rev. 38, 2590–2599 (2009). https://doi.org/10.1039/B817899M

    Article  CAS  Google Scholar 

  84. Weng, L.J., Liu, X.Q., Liang, Y.M., Xue, Q.J.: Effect of tetraalkylphosphonium based ionic liquids as lubricants on the tribological performance of a steel-on-steel system. Tribol. Lett. 26, 11–17 (2007). https://doi.org/10.1007/s11249-006-9175-8

    Article  CAS  Google Scholar 

  85. Li, Z., Celio, H., Dolocan, A., Molina, N., Kershaw, J., Morales-Collazo, O., Brennecke, J.F., Mangolini, F.: Tuning the surface reactivity and tribological performance of phosphonium-based ionic liquid at steel/steel interfaces by bromide/phosphate anion mixtures. Appl. Surf. Sci. (2021). https://doi.org/10.1016/j.apsusc.2021.151245

    Article  Google Scholar 

  86. Guan, B., Pochopien, B.A., Wright, D.S.: The chemistry, mechanism and function of tricresyl phosphate (TCP) as an anti-wear lubricant additive. Lubr. Sci. 28, 257–265 (2015). https://doi.org/10.1002/ls.1327

    Article  CAS  Google Scholar 

  87. Osei-Agyemang, E., Berkebile, S., Martini, A.: Decomposition mechanisms of anti-wear lubricant additive tricresyl phosphate on iron surfaces using dft and atomistic thermodynamic studies. Tribol. Lett. (2018). https://doi.org/10.1007/s11249-018-0998-x

    Article  Google Scholar 

  88. Rohlmann, P., Watanabe, S., Shimpi, M.R., Leckner, J., Harper, J.B., Rutland, M.W., Glavatskih, S., Harper, J.B., Glavatskih, S.: Boundary lubricity of phosphonium bisoxalatoborate ionic liquids. Tribol. Int. 161, 107075 (2021). https://doi.org/10.1016/j.triboint.2021.107075

    Article  CAS  Google Scholar 

  89. Shimpi, M.R., Rohlmann, P., Shah, F.U., Glavatskih, S., Antzutkin, O.N.: Transition anionic complex in trihexyl(tetradecyl)phosphonium-bis(oxalato)borate ionic liquid - revisited. Phys. Chem. Chem. Phys. 23, 6190–6203 (2021). https://doi.org/10.1039/d0cp05845a

    Article  CAS  Google Scholar 

  90. Spikes, H.A.: Sixty years of EHL. Lubr. Sci. 18, 265–291 (2006). https://doi.org/10.1002/ls.23

    Article  CAS  Google Scholar 

  91. Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts: part 1—theoretical formulation. J. Lubr. Technol. 98, 223–228 (1976). https://doi.org/10.1115/1.3452801

    Article  Google Scholar 

  92. Pensado, A.S., Comuñas, M.J.P., Fernández, J.: The pressure-viscosity coefficient of several ionic liquids. Tribol. Lett. 31, 107–118 (2008). https://doi.org/10.1007/s11249-008-9343-0

    Article  CAS  Google Scholar 

  93. Powell, C.J.: The Physical Basis for Quantitative Surface Analysis by Auger Electron Spectroscopy and X-ray Photoelectron Spectroscopy. In: McIntyre, N.S. (ed.) Quant, pp. 5–30. American Society for Testing and Materials, Surf. Anal. Mater. (1978)

    Google Scholar 

  94. Tanuma, S.: Electron attenuation lengths. In: Briggs, D., Grant, J.T. (Eds.), Surf. Anal. by Auger X-Ray Photoelectron Spectroscopy, pp. 259–294. IM Publications, Chichester (UK) (2003)

  95. Smith, A.M., Parkes, M.A., Perkin, S.: Molecular friction mechanisms across nanofilms of a bilayer-forming ionic liquid. J. Phys. Chem. Lett. 5, 4032–4037 (2014). https://doi.org/10.1021/jz502188g

    Article  CAS  Google Scholar 

  96. Xiao, H., Guo, D., Liu, S., Pan, G., Lu, X.: Film thickness of ionic liquids under high contact pressures as a function of alkyl chain length. Tribol. Lett. 41, 471–477 (2011). https://doi.org/10.1007/s11249-010-9729-7

    Article  CAS  Google Scholar 

  97. Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D.: Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie (1992)

    Google Scholar 

  98. Beamson, G., Briggs, D.: High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database. John Wiley & Sons, Chichester (UK) (1992)

    Google Scholar 

  99. G. Bhargava, I. Gouzman, C.M. Chun, T.A. Ramanarayanan, S.L. Bernasek, Characterization of the “native” surface thin film on pure polycrystalline iron: A high resolution XPS and TEM study, Appl. Surf. Sci. 253 (2007) 4322–4329. http://www.sciencedirect.com/science/article/B6THY-4M7CD68-1/2/a3740dd824beb0a6f4b8183ca8a9849d.

  100. C.R. Brundle, T.J. Chuang, K. Wandelt, Core and valence level photoemission studies of iron oxide surfaces and the oxidation of iron, Surf. Sci. 68 (1977) 459–468. http://www.sciencedirect.com/science/article/B6TVX-46SX0F3-1GM/2/f3aaff2bd84e32f28113ece1c7039ede.

  101. Olla, M., Navarra, G., Elsener, B., Rossi, A.: Nondestructive in-depth composition profile of oxy-hydroxide nanolayers on iron surfaces from ARXPS measurement. Surf. Interface Anal. 38, 964–974 (2006). https://doi.org/10.1002/sia.2362

    Article  CAS  Google Scholar 

  102. M. Eglin, A. Rossi, N.D. Spencer, X-ray Photoelectron Spectroscopy Analysis of Tribostressed Samples in the Presence of ZnDTP: A Combinatorial Approach, Tribol. Lett. 15 (2003) 199–209. http://www.springerlink.com/content/jg086j515145xq64.

  103. S.L. Wu, Z.D. Cui, F. He, Z.Q. Bai, S.L. Zhu, X.J. Yang, Characterization of the surface film formed from carbon dioxide corrosion on N80 steel, Mater. Lett. 58 (2004) 1076–1081. http://www.sciencedirect.com/science/article/B6TX9-49MX0HP-2/2/4b6a391704183884186b4ee1963d55f2.

  104. J.K. Heuer, J.F. Stubbins, An XPS characterization of FeCO3 films from CO2 corrosion, Corros. Sci. 41 (1999) 1231–1243. http://www.sciencedirect.com/science/article/B6TWS-3WM5H6X-1/2/d821079dcac0e54352ade1ced4db10e2.

  105. P. de Donato, C. Mustin, R. Benoit, R. Erre, Spatial distribution of iron and sulphur species on the surface of pyrite, Appl. Surf. Sci. 68 (1993) 81–93. http://www.sciencedirect.com/science/article/B6THY-46CC3KT-6Y/2/de3bf1c40bcc0a20adad2febb93c0fbc.

  106. M. Descostes, F. Mercier, N. Thromat, C. Beaucaire, M. Gautier-Soyer, Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized py, Appl. Surf. Sci. 165 (2000) 288–302. http://www.sciencedirect.com/science/article/B6THY-40WDTRR-6/2/6312a5964ec5f1d3581f72f32eec20a6.

  107. R.P. Gupta, S.K. Sen, Calculation of multiplet structure of core p -vacancy levels. II, Phys. Rev. B. 12 (1975) 15. http://link.aps.org/abstract/PRB/v12/p15.

  108. Blundell, R.K., Licence, P.: Quaternary ammonium and phosphonium based ionic liquids: a comparison of common anions. Phys. Chem. Chem. Phys. 16, 15278–15288 (2014). https://doi.org/10.1039/c4cp01901f

    Article  CAS  Google Scholar 

  109. Gabler, C., Tomastik, C., Brenner, J., Pisarova, L., Doerr, N., Allmaier, G.: Corrosion properties of ammonium based ionic liquids evaluated by SEM-EDX, XPS and ICP-OES. Green Chem. 13, 2869–2877 (2011). https://doi.org/10.1039/c1gc15148g

    Article  CAS  Google Scholar 

  110. Arellanes-Lozada, P., Olivares-Xometl, O., Likhanova, N.V., Lijanova, I.V., Vargas-García, J.R., Hernández-Ramírez, R.E.: Adsorption and performance of ammonium-based ionic liquids as corrosion inhibitors of steel. J. Mol. Liq. 265, 151–163 (2018). https://doi.org/10.1016/J.MOLLIQ.2018.04.153

    Article  CAS  Google Scholar 

  111. Baldwin, B.A.: Relative antiwear efficiency of boron and sulfur surface species. Wear 45, 345–353 (1977). https://doi.org/10.1016/0043-1648(77)90025-4

    Article  CAS  Google Scholar 

  112. Spadaro, F., Rossi, A., Lainé, E., Woodward, P., Spencer, N.D.: Tuning the surface chemistry of lubricant-derived phosphate thermal films: the effect of boron. Appl. Surf. Sci. 396, 1251–1263 (2017). https://doi.org/10.1016/J.APSUSC.2016.11.124

    Article  CAS  Google Scholar 

  113. Kumari, K., Ram, S., Kotnala, R.K.: Self-controlled growth of Fe3BO6 crystallites in shape of nanorods from iron-borate glass of small templates. Mater. Chem. Phys. 129, 1020–1026 (2011). https://doi.org/10.1016/j.matchemphys.2011.05.051

    Article  CAS  Google Scholar 

  114. Spadaro, F., Rossi, A., Ramakrishna, S.N., Lainé, E., Woodward, P., Spencer, N.D.: Understanding complex tribofilms by means of H3BO3-B2O3 model glasses. Langmuir 34, 2219–2234 (2018). https://doi.org/10.1021/ACS.LANGMUIR.7B01795/ASSET/IMAGES/LARGE/LA-2017-017959_0009.JPEG

    Article  CAS  Google Scholar 

  115. Artyushkova, K.: Misconceptions in interpretation of nitrogen chemistry from x-ray photoelectron spectra. J. Vac. Sci. Technol. A. 38, 031002 (2020). https://doi.org/10.1116/1.5135923

    Article  CAS  Google Scholar 

  116. Zhang, J., Spikes, H.: On the mechanism of ZDDP antiwear film formation. Tribol. Lett. 63, 1–15 (2016). https://doi.org/10.1007/s11249-016-0706-7

    Article  CAS  Google Scholar 

  117. Kleijwegt, R.J.T., Winkenwerder, W., Baan, W., van der Schaaf, J.: Degradation kinetics and solvent effects of various long-chain quaternary ammonium salts. Int. J. Chem. Kinet. 54, 16–27 (2022). https://doi.org/10.1002/kin.21537

    Article  CAS  Google Scholar 

  118. Filippov, A., Munavirov, B., Glavatskih, S., Shah, F.U., Antzutkin, O.N.: Diffusion of Ions in phosphonium orthoborate ionic liquids studied by 1H and 11B pulsed field gradient NMR. Front. Chem. 8, 1–9 (2020). https://doi.org/10.3389/fchem.2020.00119

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The material is based upon work supported by the Welch Foundation (Grant No. F-2002-20190330) and the National Science Foundation Faculty Early Career Development Program (Grant No. 2042304). The acquisition of the VersaProbe-IV XPS was supported by the National Science Foundation Major Research Instrumentation program (Grant No. 2117623). F.M. acknowledges support from the 2018 Ralph E. Powe Junior Faculty Enhancement Award sponsored by the Oak Ridge Associated Universities (ORAU), and from the Walker Department of Mechanical Engineering and the Texas Materials Institute at the University of Texas at Austin. Last, but not least, this paper is dedicated to the memory of Prof. Anne Neville, whose contributions to tribology are long-standing and generous commitment to the development of the next-generation of scientists and engineers is endless.

Funding

Welch Foundation, F-2002-20190330, National Science Foundation, 2042304 and 2117623, Oak Ridge Associated Universities, 2018 Ralph E. Powe Junior Faculty Enhancement Award.

Author information

Authors and Affiliations

Authors

Contributions

JY: Conceptualization, Investigation, Data curation, Formal analysis, Writing—original draft, Writing—review & editing; H-ML: Investigation, Data curation, Writing—review & editing; FM: Conceptualization, Investigation, Formal analysis, Writing—original draft, Funding acquisition, Writing—review & editing.

Corresponding author

Correspondence to Filippo Mangolini.

Ethics declarations

Competing interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 423 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Lien, HM. & Mangolini, F. Linking Molecular Structure and Lubrication Mechanisms in Tetraalkylammonium Orthoborate Ionic Liquids. Tribol Lett 71, 41 (2023). https://doi.org/10.1007/s11249-023-01714-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01714-7

Keywords

Navigation