Skip to main content
Log in

In situ Growth and Characterization of Lubricious Carbon-Based Films Using Colloidal Probe Microscopy

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Silicon oxide-doped hydrogenated amorphous carbon (a-C:H:Si:O) is an important form of diamond-like carbon (DLC) for tribological applications, primarily because of its enhanced thermal stability and reduced dependence of friction on environmental humidity. As with other DLCs, its mechanisms of lubrication are still an active area of research, though it is now known that surface passivation and tribofilm growth are important factors. In this study, tribofilm formation for a-C:H:Si:O is examined at the microscale by using steel colloid atomic force microscopy probes as the sliding counterface. This approach provides some inherent advantages over macroscale tribology experiments, namely that the tribofilm thickness and stiffness can be tracked in situ and correlated directly with the friction response. The results of these experiments show that the tribofilm grows rapidly on the steel colloid following a period of counterface wear and high friction. The friction drops more than 80% upon nucleation of the tribofilm, which is attributed to a decrease of more than 80% in adhesion combined with a decrease in the estimated interfacial shear strength of at least 65%. Approximately 80% of the friction decrease occurs before the tribofilm reaches a thickness of 2 nm, suggesting that only the near-surface properties of the tribofilm provide the needed functionality for its effective lubrication mechanisms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data utilized for the manuscript and supplemental information is available upon request from the corresponding author.

References

  1. Arnoldussen, T.C., Rossi, E.-M.: Materials for magnetic recording. Annu. Rev. Mater. Sci. 15, 379–409 (1985). https://doi.org/10.1146/annurev.ms.15.080185.002115

    Article  CAS  Google Scholar 

  2. Erdemir, A., Donnet, C.: Tribology of diamond-like carbon films: recent progress and future prospects. J. Phys. D: Appl. Phys. 39, R311 (2006). https://doi.org/10.1088/0022-3727/39/18/R01

    Article  CAS  Google Scholar 

  3. Vetter, J.: 60years of DLC coatings: historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surf. Coat. Technol. 257, 213–240 (2014). https://doi.org/10.1016/j.surfcoat.2014.08.017

    Article  CAS  Google Scholar 

  4. Casiraghi, C., Robertson, J., Ferrari, A.C.: Diamond-like carbon for data and beer storage. Mater. Today 10, 44–53 (2007). https://doi.org/10.1016/S1369-7021(06)71791-6

    Article  CAS  Google Scholar 

  5. Petersen, M., Heckmann, U., Bandorf, R., Gwozdz, V., Schnabel, S., Bräuer, G., Klages, C.-P.: Me-DLC films as material for highly sensitive temperature compensated strain gauges. Diam. Relat. Mater. 20, 814–818 (2011). https://doi.org/10.1016/j.diamond.2011.03.036

    Article  CAS  Google Scholar 

  6. Mangolini, F., Krick, B.A., Jacobs, T.D.B., Khanal, S.R., Streller, F., McClimon, J.B., Hilbert, J., Prasad, S.V., Scharf, T.W., Ohlhausen, J.A., Lukes, J.R., Sawyer, W.G., Carpick, R.W.: Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions. Carbon 130, 127–136 (2018). https://doi.org/10.1016/j.carbon.2017.12.096

    Article  CAS  Google Scholar 

  7. Chen, X., Zhang, C., Kato, T., Yang, X., Wu, S., Wang, R., Nosaka, M., Luo, J.: Evolution of tribo-induced interfacial nanostructures governing superlubricity in a-C: H and a-C:H: Si films. Nat. Commun. 8, 1675 (2017). https://doi.org/10.1038/s41467-017-01717-8

    Article  CAS  Google Scholar 

  8. Oguri, K., Arai, T.: Low friction coatings of diamond-like carbon with silicon prepared by plasma-assisted chemical vapor deposition. J. Mater. Res. 5, 2567–2571 (1990). https://doi.org/10.1557/JMR.1990.2567

    Article  CAS  Google Scholar 

  9. Cui, L., Lu, Z., Wang, L.: Environmental effect on the load-dependent friction behavior of a diamond-like carbon film. Tribol. Int. 82, 195–199 (2015). https://doi.org/10.1016/j.triboint.2014.10.014

    Article  CAS  Google Scholar 

  10. Konicek, A.R.: Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films. Phys. Rev. B. (2012). https://doi.org/10.1103/PhysRevB.85.155448

    Article  Google Scholar 

  11. Koshigan, K.D.: Understanding the influence of environment on the solid lubrication processes of carbon-based thin films. Ecully, Ecole centrale de Lyon (2015)

  12. Romero, P.A., Pastewka, L., Lautz, J.V., Moseler, M.: Surface passivation and boundary lubrication of self-mated tetrahedral amorphous carbon asperities under extreme tribological conditions. Friction 2, 193–208 (2014). https://doi.org/10.1007/s40544-014-0057-z

    Article  CAS  Google Scholar 

  13. Chen, Y.-N., Ma, T.-B., Chen, Z., Hu, Y.-Z., Wang, H.: Combined effects of structural transformation and hydrogen passivation on the frictional behaviors of hydrogenated amorphous carbon films. J. Phys. Chem. C. 119, 16148–16155 (2015). https://doi.org/10.1021/acs.jpcc.5b04533

    Article  CAS  Google Scholar 

  14. Donnet, C., Fontaine, J., Grill, A., Mogne, T.L.: The role of hydrogen on the friction mechanism of diamond-like carbon films. Tribol. Lett. 9, 137–142 (2001). https://doi.org/10.1023/A:1018800719806

    Article  Google Scholar 

  15. De Barrosouchet, M.-I., Zilibotti, G., Matta, C., Righi, M.C., Vandenbulcke, L., Vacher, B., Martin, J.-M.: Friction of diamond in the presence of water vapor and hydrogen gas. Coupling gas-phase lubrication and first-principles studies. J. Phys. Chem. C. 116, 6966–6972 (2012). https://doi.org/10.1021/jp211322s

    Article  CAS  Google Scholar 

  16. Koshigan, K.D., Mangolini, F., McClimon, J.B., Vacher, B., Bec, S., Carpick, R.W., Fontaine, J.: Understanding the hydrogen and oxygen gas pressure dependence of the tribological properties of silicon oxide–doped hydrogenated amorphous carbon coatings. Carbon 93, 851–860 (2015). https://doi.org/10.1016/j.carbon.2015.06.004

    Article  CAS  Google Scholar 

  17. Manimunda, P., Al-Azizi, A., Kim, S.H., Chromik, R.R.: Shear-Induced Structural Changes and Origin of Ultralow Friction of Hydrogenated Diamond-like Carbon (DLC) in Dry Environment. ACS Appl. Mater. Interfaces. 9, 16704–16714 (2017). https://doi.org/10.1021/acsami.7b03360

    Article  CAS  Google Scholar 

  18. McClimon, J.B., Lang, A.C., Milne, Z., Garabedian, N., Moore, A.C., Hilbert, J., Mangolini, F., Lukes, J.R., Burris, D.L., Taheri, M.L., Fontaine, J., Carpick, R.W.: Investigation of the mechanics, composition, and functional behavior of thick tribofilms formed from silicon- and oxygen-containing hydrogenated amorphous carbon. Tribol Lett. 67, 48 (2019). https://doi.org/10.1007/s11249-019-1155-x

    Article  CAS  Google Scholar 

  19. Singer, I.L., Dvorak, S.D., Wahl, K.J., Scharf, T.W.: Role of third bodies in friction and wear of protective coatings. J. Vac. Sci. Technol., A 21, S232–S240 (2003). https://doi.org/10.1116/1.1599869

    Article  CAS  Google Scholar 

  20. Godet, M.: Third-bodies in tribology. Wear 136, 29–45 (1990). https://doi.org/10.1016/0043-1648(90)90070-Q

    Article  Google Scholar 

  21. Sugimoto, I., Miyake, S.: Oriented hydrocarbons transferred from a high performance lubricative amorphous C:H: Si film during sliding in a vacuum. Appl. Phys. Lett. 56, 1868–1870 (1990). https://doi.org/10.1063/1.103072

    Article  CAS  Google Scholar 

  22. Mangolini, F., McClimon, J.B., Segersten, J., Hilbert, J., Heaney, P., Lukes, J.R., Carpick, R.W.: Silicon oxide-rich diamond-like carbon: a conformal, ultrasmooth thin film material with high thermo-oxidative stability. Adv. Mater. Interfaces 6, 1801416 (2019). https://doi.org/10.1002/admi.201801416

    Article  CAS  Google Scholar 

  23. McClimon, J.B., Hilbert, J., Lukes, J.R., Carpick, R.W.: Nanoscale run-in of silicon oxide-doped hydrogenated amorphous carbon: dependence of interfacial shear strength on sliding length and humidity. Tribol Lett. 68, 80 (2020). https://doi.org/10.1007/s11249-020-01319-4

    Article  CAS  Google Scholar 

  24. Carpick, R.W., Ogletree, D.F., Salmeron, M.: Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl. Phys. Lett. 70, 1548–1550 (1997). https://doi.org/10.1063/1.118639

    Article  CAS  Google Scholar 

  25. Chung, K.-H., Kim, D.-E.: Fundamental investigation of micro wear rate using an atomic force microscope. Tribol. Lett. 15, 135–144 (2003). https://doi.org/10.1023/A:1024457132574

    Article  CAS  Google Scholar 

  26. Bhushan, B., Koinkar, V.N.: Nanoindentation hardness measurements using atomic force microscopy. Appl. Phys. Lett. 64, 1653–1655 (1994). https://doi.org/10.1063/1.111949

    Article  CAS  Google Scholar 

  27. Wienss, A., Persch-Schuy, G., Vogelgesang, M., Hartmann, U.: Scratching resistance of diamond-like carbon coatings in the subnanometer regime. Appl. Phys. Lett. 75, 1077–1079 (1999). https://doi.org/10.1063/1.124602

    Article  CAS  Google Scholar 

  28. Ferrari, A.C.: Diamond-like carbon for magnetic storage disks. Surf. Coat. Technol. 180–181, 190–206 (2004). https://doi.org/10.1016/j.surfcoat.2003.10.146

    Article  CAS  Google Scholar 

  29. Czyzniewski, A.: Optimising deposition parameters of W-DLC coatings for tool materials of high speed steel and cemented carbide. Vacuum 86, 2140–2147 (2012). https://doi.org/10.1016/j.vacuum.2012.06.011

    Article  CAS  Google Scholar 

  30. Fukui, H., Irie, M., Utsumi, Y., Oda, K., Ohara, H.: An investigation of the wear track on DLC (a-C:H) film by time-of-flight secondary ion mass spectroscopy. Surf. Coat. Technol. 146–147, 378–383 (2001). https://doi.org/10.1016/S0257-8972(01)01422-0

    Article  Google Scholar 

  31. Neerinck, D., Persoone, P., Sercu, M., Goel, A., Kester, D., Bray, D.: Diamond-like nanocomposite coatings (a-C:H/a-Si:O) for tribological applications. Diam. Relat. Mater. 7, 468–471 (1998). https://doi.org/10.1016/S0925-9635(97)00201-X

    Article  CAS  Google Scholar 

  32. Tsai, P.-C., Hwang, Y.-F., Chiang, J.-Y., Chen, W.-J.: The effects of deposition parameters on the structure and properties of titanium-containing DLC films synthesized by cathodic arc plasma evaporation. Surf. Coat. Technol. 202, 5350–5355 (2008). https://doi.org/10.1016/j.surfcoat.2008.06.073

    Article  CAS  Google Scholar 

  33. Poirié, T., Schmitt, T., Bousser, E., Martinu, L., Klemberg-Sapieha, J.E.: In situ real time nanowear testing method of optical functional thin films. Tribol. Int. 95, 147–155 (2016). https://doi.org/10.1016/j.triboint.2015.10.020

    Article  CAS  Google Scholar 

  34. Zhao, W., Pu, J., Yu, Q., Zeng, Z., Wu, X., Xue, Q.: A Novel strategy to enhance micro/nano-tribological properties of DLC film by combining micro-pattern and thin ionic liquids film. Colloids Surf., A 428, 70–78 (2013). https://doi.org/10.1016/j.colsurfa.2013.03.047

    Article  CAS  Google Scholar 

  35. Nalam, P.C., Gosvami, N.N., Caporizzo, M.A., Composto, R.J., Carpick, R.W.: Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy. Soft Matter 11, 8165–8178 (2015). https://doi.org/10.1039/C5SM01143D

    Article  CAS  Google Scholar 

  36. Cook, S.M., Schäffer, T.E., Chynoweth, K.M., Wigton, M., Simmonds, R.W., Lang, K.M.: Practical implementation of dynamic methods for measuring atomic force microscope cantilever spring constants. Nanotechnology 17, 2135 (2006). https://doi.org/10.1088/0957-4484/17/9/010

    Article  CAS  Google Scholar 

  37. Li, Q., Kim, K.-S., Rydberg, A.: Lateral force calibration of an atomic force microscope with a diamagnetic levitation spring system. Rev. Sci. Instrum. 77, 065105 (2006). https://doi.org/10.1063/1.2209953

    Article  CAS  Google Scholar 

  38. Pastewka, L., Robbins, M.O.: Contact area of rough spheres: Large scale simulations and simple scaling laws. Appl. Phys. Lett. 108, 221601 (2016). https://doi.org/10.1063/1.4950802

    Article  CAS  Google Scholar 

  39. Radmacher, M., Tillmann, R.W., Gaub, H.E.: Imaging viscoelasticity by force modulation with the atomic force microscope. Biophys. J . 64, 735–742 (1993). https://doi.org/10.1016/S0006-3495(93)81433-4

    Article  CAS  Google Scholar 

  40. Derjaguin, B.V., Muller, V.M., Toporov, Yu.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975). https://doi.org/10.1016/0021-9797(75)90018-1

    Article  CAS  Google Scholar 

  41. Jung, H., Gweon, D.-G.: Creep characteristics of piezoelectric actuators. Rev. Sci. Instrum. 71, 1896–1900 (2000). https://doi.org/10.1063/1.1150559

    Article  CAS  Google Scholar 

  42. Fontaine, J., Le Mogne, T., Loubet, J.L., Belin, M.: Achieving superlow friction with hydrogenated amorphous carbon: some key requirements. Thin Solid Films 482, 99–108 (2005). https://doi.org/10.1016/j.tsf.2004.11.126

    Article  CAS  Google Scholar 

  43. dos Santos, M.B., Costa, H.L., De Mello, J.D.B.: Potentiality of triboscopy to monitor friction and wear. Wear 332–333, 1134–1144 (2015). https://doi.org/10.1016/j.wear.2014.10.017

    Article  CAS  Google Scholar 

  44. Scharf, T.W., Ohlhausen, J.A., Tallant, D.R., Prasad, S.V.: Mechanisms of friction in diamondlike nanocomposite coatings. J. Appl. Phys. (2007). https://doi.org/10.1063/1.2711147

    Article  Google Scholar 

  45. Hauert, R.: An overview on the tribological behavior of diamond-like carbon in technical and medical applications. Tribol. Int. 37, 991–1003 (2004). https://doi.org/10.1016/j.triboint.2004.07.017

    Article  CAS  Google Scholar 

  46. Ronkainen, H., Koskinen, J., Likonen, J., Varjus, S., Vihersalo, J.: Characterization of wear surfaces in dry sliding of steel and alumina on hydrogenated and hydrogen-free carbon films. Diam. Relat. Mater. 3, 1329–1336 (1994). https://doi.org/10.1016/0925-9635(94)90147-3

    Article  CAS  Google Scholar 

  47. Ronkainen, H., Likonen, J., Koskinen, J., Varjus, S.: Effect of tribofilm formation on the tribological performance of hydrogenated carbon coatings. Surf. Coat. Technol. 79, 87–94 (1996). https://doi.org/10.1016/0257-8972(95)02433-6

    Article  CAS  Google Scholar 

  48. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. Ser. A 295, 300–319 (1966). https://doi.org/10.1098/rspa.1966.0242

    Article  CAS  Google Scholar 

  49. Kalin, M., Polajnar, M.: The wetting of steel, DLC coatings, ceramics and polymers with oils and water: the importance and correlations of surface energy, surface tension, contact angle and spreading. Appl. Surf. Sci. 293, 97–108 (2014). https://doi.org/10.1016/j.apsusc.2013.12.109

    Article  CAS  Google Scholar 

  50. Mantel, M., Wightman, J.P.: Influence of the surface chemistry on the wettability of stainless steel. Surf. Interface Anal. 21, 595–605 (1994). https://doi.org/10.1002/sia.740210902

    Article  CAS  Google Scholar 

  51. Tyson, W.R., Miller, W.A.: Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surf. Sci. 62, 267–276 (1977). https://doi.org/10.1016/0039-6028(77)90442-3

    Article  CAS  Google Scholar 

  52. Carpick, R.W., Ogletree, D.F., Salmeron, M.: A general equation for fitting contact area and friction vs load measurements. J. Colloid Interface Sci. 211, 395–400 (1999). https://doi.org/10.1006/jcis.1998.6027

    Article  CAS  Google Scholar 

  53. Carpick, R.W., Agraït, N., Ogletree, D.F., Salmeron, M.: Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope. J. Vacuum Sci. Technol. B 14, 1289–1295 (1996). https://doi.org/10.1116/1.589083

    Article  CAS  Google Scholar 

  54. Scharf, T.W., Singer, I.L.: Monitoring transfer films and friction instabilities with in situ raman tribometry. Tribol. Lett. 14, 3–8 (2003). https://doi.org/10.1023/A:1021942830132

    Article  CAS  Google Scholar 

  55. Scharf, T.W., Singer, I.L.: Role of third bodies in friction behavior of diamond-like nanocomposite coatings studied by in situ tribometry. Tribol. Trans. 45, 363–371 (2002). https://doi.org/10.1080/10402000208982561

    Article  CAS  Google Scholar 

  56. Ma, T.-B., Wang, L.-F., Hu, Y.-Z., Li, X., Wang, H.: A shear localization mechanism for lubricity of amorphous carbon materials. Sci. Rep. (2014). https://doi.org/10.1038/srep03662

    Article  Google Scholar 

  57. Wang, K., Zhang, J., Ma, T., Liu, Y., Song, A., Chen, X., Hu, Y., Carpick, R.W., Luo, J.: Unraveling the friction evolution mechanism of diamond-like carbon film during nanoscale running-in process toward superlubricity. Small 17, 2005607 (2021). https://doi.org/10.1002/smll.202005607

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Advanced Storage Technology Consortium ASTC (Grant 2011-012), the National Science Foundation under Grant No. DMR-1107642, the National Science Foundation through the University of Pennsylvania Materials Research Science and Engineering Center (MRSEC) (DMR-1720530), and by the Agence Nationale de la Recherche under Grant No. ANR-11- NS09-01 through the Materials World Network program. NSF Major Research Instrumentation Grant DMR-0923245 and use of the Scanning and Local Probe Facility of the Singh Center for Nanotechnology, which is supported by the NSF National Nanotechnology Coordinated Infrastructure Program under grant NNCI-2025608, are acknowledged.

Funding

Advanced Storage Technology Consortium, 2011-012, National Science Foundation, DMR-1720530 and NNCI-2025608, Agence Nationale de la Recherche, ANR-11- NS09-01.

Author information

Authors and Affiliations

Authors

Contributions

JBM conceived and performed the experiments and wrote the manuscript. JH helped conceive and perform the experiments. KMK conceived and performed the experiments. JF conceived and supervised the experiments. JL conceived and supervised the experiments. RWC conceived and supervised the experiments.

Corresponding author

Correspondence to Robert W. Carpick.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8105 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McClimon, J.B., Hilbert, J., Koshigan, K.D. et al. In situ Growth and Characterization of Lubricious Carbon-Based Films Using Colloidal Probe Microscopy. Tribol Lett 71, 39 (2023). https://doi.org/10.1007/s11249-023-01712-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01712-9

Keywords

Navigation