Skip to main content
Log in

Development of Vegetable Oil-Based Greases for Extreme Pressure Applications: An Integration of Non-toxic, Eco-Friendly Ingredients for Enhanced Performance

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Several permutations and combinations of the ingredients have been tried to develop eco-friendly alternatives to conventional mineral/petroleum oil-based greases; however, a potential solution is not yet reached. Surprisingly, the incorporation of environmentally benign additives and their synergy with the greases was least explored in this area. The present study explores a maiden effort to enhance the extreme pressure (EP) characteristics of eco-friendly greases (based on vegetable oil and organoclay) using calcium carbonate (CaCO3) nanoparticles as an additive. The developed nano-greases displayed an improved EP behavior (as per ASTM standards) at all concentrations of the nanoparticles (0.1–4% w/w), and the performance ameliorates with increasing concentration (up to 60% increment achieved). The enhanced performance is attributed to the calcination of nano-CaCO3 into nano-CaO under extreme conditions. The worn surfaces revealed the formation of a more robust (high melting point, low shear strength, rapidly formed, and tribosintered) tribofilm incorporating the organoclay and the nano-CaO. The formulated greases also demonstrated biocompatible behavior toward human osteoblast-like cells (MG-63) in MTT and Live-dead cell assays.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Singh, T.: Grease production survey report. In: 22nd Lubricating Grease Conference, NLGI India-Chapter, NLGI Missouri (2020)

  2. Aluyor, E.O., Ori-jesu, M.: Biodegradation of mineral oils—a review. Afr. J. Biotechnol. 8, 915–920 (2009). https://doi.org/10.4314/ajb.v8i6.59986

    Article  CAS  Google Scholar 

  3. Ivens, G.W.: the Phytotoxicity of Mineral Oils and Hydrocarbons. Ann Appl Biol 39, 418–422 (1952). https://doi.org/10.1111/j.1744-7348.1952.tb01026.x

    Article  Google Scholar 

  4. Hard, G.C.: Short-term adverse effects in humans of ingested mineral oils, their additives and possible contaminants—a review. Hum. Exp. Toxicol. 19, 158–172 (2000). https://doi.org/10.1191/096032700678827726

    Article  CAS  Google Scholar 

  5. Fialová, J., Samešová, D., Mitterpach, J., Schwarz, M., Veverková, D., Hybská, H.: Assessment of ecotoxicological properties of oils in water. Arch. Environ. Prot. 44, 31–37 (2018). https://doi.org/10.24425/122300

    Article  CAS  Google Scholar 

  6. Luna, F.M.T., Rocha, B.S., Rola, E.M., Albuquerque, M.C.G., Azevedo, D.C.S., Cavalcante, C.L.: Assessment of biodegradability and oxidation stability of mineral, vegetable and synthetic oil samples. Ind. Crops Prod. 33, 579–583 (2011). https://doi.org/10.1016/j.indcrop.2010.12.012

    Article  CAS  Google Scholar 

  7. Carpenter, J.F.: Biodegradability and toxicity of polyalphaolefin base stocks. J. Synth. Lubr. 12, 13–20 (1995). https://doi.org/10.1002/jsl.3000120103

    Article  CAS  Google Scholar 

  8. Kszos, L.A., Stewart, A.J.: Review of lithium in the aquatic environment: distribution in the United States, toxicity and case example of groundwater contamination. Ecotoxicology 12, 439–447 (2003). https://doi.org/10.1023/A:1026112507664

    Article  CAS  Google Scholar 

  9. Aral, H., Vecchio-Sadus, A.: Toxicity of lithium to humans and the environment—a literature review. Ecotoxicol. Environ. Saf. 70, 349–356 (2008). https://doi.org/10.1016/j.ecoenv.2008.02.026

    Article  CAS  Google Scholar 

  10. Johnson, J.H., Crookshank, H.R., Smalley, H.E.: Lithium toxicity in cattle. Vet. Hum. Toxicol. 22, 248–251 (1980)

    CAS  Google Scholar 

  11. Gow, G.: Chemistry and Technology of Lubricants, pp. 411–432. Springer, Dordrecht (2010). https://doi.org/10.1023/b105569

  12. Herdan, J.M.: Lubricating oil additives and the environment—an overview. Lubr. Sci. 9, 161–172 (1997). https://doi.org/10.1002/ls.3010090205

    Article  CAS  Google Scholar 

  13. Hsu, Y.L., Lee, C.H., Kreng, V.B.: Analysis and comparison of regenerative technologies of waste lubricant. WSEAS Trans. Environ. Dev. 5, 295–309 (2009)

    CAS  Google Scholar 

  14. Salih, N.: A review on new trends, challenges and prospects of ecofriendly friendly green food-grade biolubricants. Biointerfaces Res. Appl. Chem. 12, 1185–1207 (2021). https://doi.org/10.33263/briac121.11851207

    Article  CAS  Google Scholar 

  15. Panchal, T.M., Patel, A., Chauhan, D.D., Thomas, M., Patel, J.V.: A methodological review on bio-lubricants from vegetable oil based resources. Renew. Sustain. Energy Rev. 70, 65–70 (2017). https://doi.org/10.1016/j.rser.2016.11.105

    Article  CAS  Google Scholar 

  16. Srivastava, A., Sahai, P.: Vegetable oils as lube basestocks: a review. Afr. J. Biotechnol. 12, 880–891 (2013). https://doi.org/10.5897/AJB12.2823

    Article  Google Scholar 

  17. Aluyor, E.O., Obahiagbon, K.O., Ori-Jesu, M.: Biodegradation of vegetable oils: a review. Sci. Res. Essays 4, 543–548 (2009)

    Google Scholar 

  18. Adhvaryu, A., Erhan, S.Z.: Epoxidized soybean oil as a potential source of high-temperature lubricants. Ind. Crops Prod. 15, 247–254 (2002). https://doi.org/10.1016/S0926-6690(01)00120-0

    Article  CAS  Google Scholar 

  19. Sharma, B.K., Adhvaryu, A., Perez, J.M., Erhan, S.Z.: Soybean oil based greases: influence of composition on thermo-oxidative and tribochemical behavior. J. Agric. Food Chem. 53, 2961–2968 (2005). https://doi.org/10.1021/jf0486702

    Article  CAS  Google Scholar 

  20. Lodhi, A.P.S., Kumar, D.: Natural ingredients based environmental friendly metalworking fluid with superior lubricity. Colloids Surfaces A Physicochem. Eng. Asp. 613, 126071 (2021). https://doi.org/10.1016/j.colsurfa.2020.126071

    Article  CAS  Google Scholar 

  21. Vinnichek, L., Pogorelova, E., Dergunov, A.: Oilseed market: global trends. IOP Conf. Ser. Earth Environ. Sci. (2019). https://doi.org/10.1088/1755-1315/274/1/012030

    Article  Google Scholar 

  22. Sánchez, R., Franco, J.M., Delgado, M.A., Valencia, C., Gallegos, C.: Rheology of oleogels based on sorbitan and glyceryl monostearates and vegetable oils for lubricating applications. Grasas Aceites 62, 328–336 (2011). https://doi.org/10.3989/gya.113410

    Article  CAS  Google Scholar 

  23. Gallego, R., Arteaga, J.F., Valencia, C., Franco, J.M.: Rheology and thermal degradation of isocyanate-functionalized methyl cellulose-based oleogels. Carbohydr. Polym. 98, 152–160 (2013). https://doi.org/10.1016/j.carbpol.2013.04.104

    Article  CAS  Google Scholar 

  24. Sánchez, M.C., Núñez, N., Franco, J.M., Valencia, C., Martín-Alfonso, J.E.: Rheology of new green lubricating grease formulations containing cellulose pulp and its methylated derivative as thickener agents. Ind. Crops Prod. 37, 500–507 (2012). https://doi.org/10.1016/j.indcrop.2011.07.027

    Article  CAS  Google Scholar 

  25. Gorbacheva, S.N., Yarmush, Y.M., Ilyin, S.O.: Rheology and tribology of ester-based greases with microcrystalline cellulose and organomodified montmorillonite. Tribol. Int. (2020). https://doi.org/10.1016/j.triboint.2020.106318

    Article  Google Scholar 

  26. Chtourou, M., Frikha, M.H., Trabelsi, M.: Modified smectitic Tunisian clays used in the formulation of high performance lubricating greases. Appl. Clay Sci. 32, 210–216 (2006). https://doi.org/10.1016/j.clay.2006.03.003

    Article  CAS  Google Scholar 

  27. Martín-Alfonso, J.E., Martín-Alfonso, M.J., Valencia, C., Cuberes, M.T.: Rheological and tribological approaches as a tool for the development of sustainable lubricating greases based on nano-montmorillonite and castor oil. Friction 9, 415–428 (2021). https://doi.org/10.1007/s40544-020-0407-y

    Article  CAS  Google Scholar 

  28. Guo, Y.X., Liu, J.H., Gates, W.P., Zhou, C.H.: Organo-modification of montmorillonite. Clays Clay Miner. 68, 601–622 (2020). https://doi.org/10.1007/s42860-020-00098-2

    Article  CAS  Google Scholar 

  29. Williams, C.G.: Mechanism of action of extreme pressure lubricants. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 212(1111), 512–515 (1952). https://doi.org/10.1098/rspa.1952.0256

    Article  CAS  Google Scholar 

  30. Xu, Z., Lu, J., Zheng, X., Chen, B., Luo, Y., Tahir, M.N., et al.: A critical review on the applications and potential risks of emerging MoS2 nanomaterials. J. Hazard Mater. 399, 123057 (2020). https://doi.org/10.1016/j.jhazmat.2020.123057

    Article  CAS  Google Scholar 

  31. Verma, S., Kumar, V., Gupta, K.D.: Performance analysis of flexible multirecess hydrostatic journal bearing operating with micropolar lubricant. Lubr. Sci. 24, 273–292 (2012). https://doi.org/10.1002/ls.1181

    Article  Google Scholar 

  32. Sequoia, S.A., Palacios, J.M., Rincon, A., Arizmendi, L.: Wear 60, 393–399 (1980)

    Article  Google Scholar 

  33. Singh, J., Kumar, D., Tandon, N.: Tribological and vibration studies on newly developed nanocomposite greases under boundary lubrication regime. J. Tribol. 140, 1–10 (2018). https://doi.org/10.1115/1.4038100

    Article  CAS  Google Scholar 

  34. Ji, X., Chen, Y., Zhao, G., Wang, X., Liu, W.: Tribological properties of CaCO3 nanoparticles as an additive in lithium grease. Tribol. Lett. 41, 113–119 (2011). https://doi.org/10.1007/s11249-010-9688-z

    Article  CAS  Google Scholar 

  35. Akhtar, K., Yousafzai, S.: Antiwear properties of commercial grease as a function of particle morphology and uniformity of the as-synthesized calcium carbonate additive. J. Tribol. 143, 1–9 (2021). https://doi.org/10.1115/1.4048270

    Article  CAS  Google Scholar 

  36. Jin, D., Yue, L.: Tribological properties study of spherical calcium carbonate composite as lubricant additive. Mater. Lett. 62, 1565–1568 (2008). https://doi.org/10.1016/j.matlet.2007.09.023

    Article  CAS  Google Scholar 

  37. Xu, N., Zhang, M., Li, W., Zhao, G., Wang, X., Liu, W.: Study on the selectivity of calcium carbonate nanoparticles under the boundary lubrication condition. Wear 307, 35–43 (2013). https://doi.org/10.1016/j.wear.2013.07.010

    Article  CAS  Google Scholar 

  38. Zhang, M., Wang, X., Fu, X., Xia, Y.: Performance and anti-wear mechanism of CaCO3 nanoparticles as a green additive in poly-alpha-olefin. Tribol. Int. 42, 1029–1039 (2009). https://doi.org/10.1016/j.triboint.2009.02.012

    Article  CAS  Google Scholar 

  39. Gu, C., Li, Q., Gu, Z., Zhu, G.: Study on application of CeO2 and CaCO3 nanoparticles in lubricating oils. J. Rare Earths 26, 163–167 (2008). https://doi.org/10.1016/S1002-0721(08)60058-7

    Article  Google Scholar 

  40. Shan, D., Zhu, M., Xue, H., Cosnier, S.: Development of amperometric biosensor for glucose based on a novel attractive enzyme immobilization matrix: calcium carbonate nanoparticles. Biosens. Bioelectron. 22, 1612–1617 (2007). https://doi.org/10.1016/j.bios.2006.07.019

    Article  CAS  Google Scholar 

  41. Kim, S.K., Foote, M.B., Huang, L.: Targeted delivery of EV peptide to tumor cell cytoplasm using lipid coated calcium carbonate nanoparticles. Cancer Lett. 334, 311–318 (2013). https://doi.org/10.1016/j.canlet.2012.07.011

    Article  CAS  Google Scholar 

  42. Lauth, V., Maas, M., Rezwan, K.: An evaluation of colloidal and crystalline properties of CaCO3 nanoparticles for biological applications. Mater. Sci. Eng. C 78, 305–314 (2017). https://doi.org/10.1016/j.msec.2017.04.037

    Article  CAS  Google Scholar 

  43. Shahnazar, S., Bagheri, S., Abd Hamid, S.B.: Enhancing lubricant properties by nanoparticle additives. Int. J. Hydrogen Energy 41, 3153–3170 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.040

    Article  CAS  Google Scholar 

  44. Uflyand, I.E., Zhinzhilo, V.A., Burlakova, V.E.: Metal-containing nanomaterials as lubricant additives: state-of-the-art and future development. Friction 7, 93–116 (2019). https://doi.org/10.1007/s40544-019-0261-y

    Article  Google Scholar 

  45. Gulzar, M., Masjuki, H.H., Kalam, M.A., Varman, M., Zulkifli, N.W.M., Mufti, R.A., et al.: Tribological performance of nanoparticles as lubricating oil additives. J. Nanopart. Res. 18, 1–25 (2016). https://doi.org/10.1007/s11051-016-3537-4

    Article  CAS  Google Scholar 

  46. Bhatt, I., Tripathi, B.N.: Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82, 308–317 (2011). https://doi.org/10.1016/j.chemosphere.2010.10.011

    Article  CAS  Google Scholar 

  47. Biradar, S., Ravichandran, P., Gopikrishnan, R., Goornavar, V., Hall, J.C., Ramesh, V., et al.: Calcium carbonate nanoparticles: synthesis, characterization and biocompatibility. J. Nanosci. Nanotechnol. 11, 6868–6874 (2011). https://doi.org/10.1166/jnn.2011.4251

    Article  CAS  Google Scholar 

  48. Maleki Dizaj, S., Barzegar-Jalali, M., Zarrintan, M.H., Adibkia, K., Lotfipour, F.: Calcium carbonate nanoparticles as cancer drug delivery system. Expert Opin. Drug Deliv. 12, 1649–1660 (2015). https://doi.org/10.1517/17425247.2015.1049530

    Article  CAS  Google Scholar 

  49. d’Amora, M., Liendo, F., Deorsola, F.A., Bensaid, S., Giordani, S.: Toxicological profile of calcium carbonate nanoparticles for industrial applications. Colloids Surfaces B Biointerfaces 190, 110947 (2020). https://doi.org/10.1016/j.colsurfb.2020.110947

    Article  CAS  Google Scholar 

  50. Saxena, A., Kumar, D., Tandon, N.: Development of eco-friendly nano-greases based on vegetable oil: an exploration of the character via structure. Ind. Crops Prod. 172, 114033 (2021). https://doi.org/10.1016/j.indcrop.2021.114033

    Article  CAS  Google Scholar 

  51. Lugt, P.M.: Modern advancements in lubricating grease technology. Tribol. Int. 97, 467–477 (2016). https://doi.org/10.1016/j.triboint.2016.01.045

    Article  CAS  Google Scholar 

  52. Lugt, P.M.: Grease Lubrication in Rolling Bearings. Wiley, West Sussex (2012)

    Book  Google Scholar 

  53. Lugt, P.M.: A review on grease lubrication in rolling bearings. Tribol. Lubr. Technol. 66, 44 (2010)

    CAS  Google Scholar 

  54. Wang, B., Qiu, F., Barber, G.C., Zou, Q., Wang, J., Guo, S., et al.: Role of nano-sized materials as lubricant additives in friction and wear reduction: a review. Wear 490–491, 204206 (2022). https://doi.org/10.1016/j.wear.2021.204206

    Article  CAS  Google Scholar 

  55. Equipment, O.S.C.: Standard test methods for cone penetration of lubricating grease using one-quarter. Current 05, 1–8 (1998). https://doi.org/10.1520/D0217-17.2

    Article  Google Scholar 

  56. Over, G., Temperature, W.: Standard test method for dropping point of lubricating grease 1. Annu. B ASTM Stand. 02, 1–5 (2009). https://doi.org/10.1520/D1831-11.2

    Article  Google Scholar 

  57. American, A., Standard, N.: Standard test method for detection of copper corrosion from lubricating grease 1. Order A. J. Theory Ordered Sets Appl. 05, 3–6 (2002)

    Google Scholar 

  58. Standards, A.: Standard test method for measurement of extreme-pressure properties of lubricating. Annu. B ASTM Stand. 88, 1–8 (1998). https://doi.org/10.1520/D2596-15.2

    Article  Google Scholar 

  59. Roman, C., Valencia, C., Franco, J.M.: AFM and SEM assessment of lubricating grease microstructures: influence of sample preparation protocol, frictional working conditions and composition. Tribol. Lett. 63, 1–12 (2016). https://doi.org/10.1007/s11249-016-0710-y

    Article  CAS  Google Scholar 

  60. Poiana, M.A., Alexa, E., Munteanu, M.F., Gligor, R., Moigradean, D., Mateescu, C.: Use of ATR-FTIR spectroscopy to detect the changes in extra virgin olive oil by adulteration with soybean oil and high temperature heat treatment. Open Chem. 13, 689–698 (2015). https://doi.org/10.1515/chem-2015-0110

    Article  CAS  Google Scholar 

  61. Wójcik-Bania, M.: Influence of the addition of organo-montmorillonite nanofiller on cross-linking of polysiloxanes—FTIR studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. (2021). https://doi.org/10.1016/j.saa.2021.119491

    Article  Google Scholar 

  62. Tyagi, B., Chudasama, C.D., Jasra, R.V.: Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 64, 273–278 (2006). https://doi.org/10.1016/j.saa.2005.07.018

    Article  CAS  Google Scholar 

  63. Motawie, A.M., Madany, M.M., El-Dakrory, A.Z., Osman, H.M., Ismail, E.A., Badr, M.M., et al.: Physico-chemical characteristics of nano-organo bentonite prepared using different organo-modifiers. Egypt J. Pet. 23, 331–338 (2014). https://doi.org/10.1016/j.ejpe.2014.08.009

    Article  Google Scholar 

  64. Kuriyavar, S.I., Vetrivel, R., Hegde, S.G., Ramaswamy, A.V., Chakrabarty, D., Mahapatra, S.: Insights into the formation of hydroxyl ions in calcium carbonate: temperature dependent FTIR and molecular modelling studies. J. Mater. Chem. 10, 1835–1840 (2000). https://doi.org/10.1039/b001837f

    Article  CAS  Google Scholar 

  65. Plav, B., Kobe, S., Orel, B.: Identification of crystallization forms of CaCO3 with FTIR spectroscopy. Kovine Zlitine The. 33, 517–521 (1999)

    Google Scholar 

  66. Zhuang, G., Zhang, Z., Jaber, M.: Organoclays used as colloidal and rheological additives in oil-based drilling fluids: an overview. Appl. Clay Sci. 177, 63–81 (2019). https://doi.org/10.1016/j.clay.2019.05.006

    Article  CAS  Google Scholar 

  67. Habte, L., Shiferaw, N., Mulatu, D., Thenepalli, T.: Synthesis of nano-calcium oxide from waste eggshell by sol-gel method. Sustainability 11, 3196 (2019). https://doi.org/10.3390/su11113196

    Article  CAS  Google Scholar 

  68. Wisniewski, M., Szczerek, M., Tuszynski, W.: The temperatures at scuffing and seizure in a four-ball contact. Lubr Sci 16, 215–227 (2004). https://doi.org/10.1002/ls.3010160303

    Article  Google Scholar 

  69. Santos, J.C.O., Santos, I.M.G., Conceição, M.M., Porto, S.L., Trindade, M.F.S., Souza, A.G., et al.: Thermoanalytical, kinetic and rheological parameters of commercial edible vegetable oils. J. Therm. Anal. Calorim. 75, 419–428 (2004). https://doi.org/10.1023/B:JTAN.0000027128.62480.db

    Article  CAS  Google Scholar 

  70. Xie, W., Gao, Z., Pan, W.P., Hunter, D., Singh, A., Vaia, R.: Thermal degradation chemistry of alkyl quaternary ammonium Montmorillonite. Chem. Mater. 13, 2979–2990 (2001). https://doi.org/10.1021/cm010305s

    Article  CAS  Google Scholar 

  71. Barker, R.: The reversibility of the reaction CaCO3 ⇄ CaO + CO2. J. Appl. Chem. Biotechnol. 23, 733–742 (2007). https://doi.org/10.1002/jctb.5020231005

    Article  Google Scholar 

  72. Haynes, W.M.: CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  73. Kato, H., Komai, K.: Tribofilm formation and mild wear by tribo-sintering of nanometer-sized oxide particles on rubbing steel surfaces. Wear 262, 36–41 (2007). https://doi.org/10.1016/j.wear.2006.03.046

    Article  CAS  Google Scholar 

  74. Fan, X., Li, W., Fu, H., Zhu, M., Wang, L., Cai, Z., et al.: Probing the function of solid nanoparticle structure under boundary lubrication. ACS Sustain. Chem. Eng. 5(5), 4223–4233 (2017)

    Article  CAS  Google Scholar 

  75. German, R.M.: Powder Metallurgy Science. Metal Powder Industries Federation, Princeton (1984)

    Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to the Central Research Facility (CRF), IIT Delhi and Nano Research Facility (NRF), IIT Delhi (especially Mr. Manoj Kumar Jaiswal, Ms. Aastha Sharma, and Ms. Anupriya Tiwari) for providing impressive support in the characterization work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AS contributed to methodology, investigation, formal analysis, data curation, visualization, and writing of the original draft. DK contributed to supervision, conceptualization, visualization, writing, reviewing, and editing of the manuscript, and validation. NT contributed to supervision, visualization, writing, reviewing, and editing of the manuscript, and validation. TK assisted in cell culture data curation and partial writing of the original draft. NS assisted in visualization, validation, and resources collection.

Corresponding author

Correspondence to Deepak Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, A., Kumar, D., Tandon, N. et al. Development of Vegetable Oil-Based Greases for Extreme Pressure Applications: An Integration of Non-toxic, Eco-Friendly Ingredients for Enhanced Performance. Tribol Lett 70, 108 (2022). https://doi.org/10.1007/s11249-022-01651-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-022-01651-x

Keywords

Navigation