Skip to main content
Log in

Achieving Superlubricity of Ricinoleic Acid in the Steel/Si3N4 Contact Under Boundary Lubrication

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

To improve fuel efficiency and minimize environmental pollution, the interest in organic friction modifiers has resurged, especially fatty acids. Efforts have been made to enhance fatty acids’ performance by tuning their saturation state and adding OH lateral groups in the alkyl chain. Here, we compared lubrication properties in the boundary regime for oleic acid (OA), ricinoleic acid (RA), and linoleic acid (LA) under the same viscosity for a steel/Si3N4 tribo-pair. The presence of the OH group in the OA chain reduces not only friction coefficient (CoF) by ~ 70% but also prevents scratches from generating on both surfaces. In the meantime, it determines local friction distribution by controlling top surface terminations. Even at 100 °C, the steady-state friction coefficient of steel/Si3N4 lubricated by RA is only 0.014. A temperature decrease to 80 °C leads to a superlubricity regime (CoF < 0.01) resulting from the cooperation of nanometer-thick liquid film (possibly containing water) and low friction of contact asperities terminated by OH hydroxyl groups provided by RA. In summary, steel/Si3N4 contact lubricated by ricinoleic acid gives unsurpassed tribological performances reaching superlubricity under a wide range of operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Spikes, H.: Friction modifier additives. Tribol. Lett. 60, 1–26 (2015). https://doi.org/10.1007/s11249-015-0589-z

    Article  Google Scholar 

  2. Ewen, J.P., Gattinoni, C., Morgan, N., Spikes, H.A., Dini, D.: Nonequilibrium molecular dynamics simulations of organic friction modifiers adsorbed on iron oxide surfaces. Langmuir 32, 4450–4463 (2016). https://doi.org/10.1021/acs.langmuir.6b00586

    Article  CAS  Google Scholar 

  3. Loehlé, S., Matta, C., Minfray, C., Le Mogne, T., Iovine, R., Obara, Y., Miyamoto, A., Martin, J.M.: Mixed lubrication of steel by C18 fatty acids revisited. Part II: influence of some key parameters. Tribol. Int. 94, 207–216 (2016). https://doi.org/10.1016/j.triboint.2015.08.036

    Article  CAS  Google Scholar 

  4. Jahanmir, S., Beltzer, M.: Effect of additive molecular structure on friction coefficient and adsorption. J. Tribol. 108, 109–116 (1986). https://doi.org/10.1115/1.3261129

    Article  CAS  Google Scholar 

  5. Tadokoro, C., Araya, S., Okubo, H., Nakano, K., Sasaki, S.: Polarization observations of adsorption behavior of fatty acids using optical anisotropy of liquid crystal. Tribol. Lett. 64, 1–9 (2016). https://doi.org/10.1007/s11249-016-0765-9

    Article  CAS  Google Scholar 

  6. Salmeron, M.: Generation of defects in model lubricant monolayers and their contribution to energy dissipation in friction. Tribol. Lett. 10, 69–79 (2001). https://doi.org/10.1023/A:1009026312732

    Article  CAS  Google Scholar 

  7. Lundgren, S.M., Persson, K., Mueller, G., Kronberg, B., Clarke, J., Chtaib, M., Claesson, P.M.: Unsaturated fatty acids in alkane solution: adsorption to steel surfaces. Langmuir 23, 10598–10602 (2007). https://doi.org/10.1021/la700909v

    Article  CAS  Google Scholar 

  8. Hibi, Y., Nakano, M.: Effect of oleic acid on friction and wear behavior of silicon nitride in ethanol and in n-Undecane. J. Jpn. Soc. Tribologis. 59, 515–520 (2014). https://doi.org/10.14886/sssj2008.33.0_219

    Article  Google Scholar 

  9. Studt, P.: Boundary lubrication: adsorption of oil additives on steel and ceramic surfaces and its influence on friction and wear. Tribol. Int. 22, 111–119 (1989). https://doi.org/10.1016/0301-679X(89)90171-0

    Article  CAS  Google Scholar 

  10. Salem, L.: Attractive forces between long saturated chains at short distances. J. Chem. Phys. 37, 2100–2113 (1962). https://doi.org/10.1063/1.1733431

    Article  CAS  Google Scholar 

  11. Martin, J.M., Matta, C., Bouchet, M.I.D.B., Forest, C., Le Mogne, T., Dubois, T., Mazarin, M.: Mechanism of friction reduction of unsaturated fatty acids as additives in diesel fuels. Friction 1, 252–258 (2013). https://doi.org/10.1007/s40544-013-0022-2

    Article  CAS  Google Scholar 

  12. Kuwahara, T., Romero, P.A., Makowski, S., Weihnacht, V., Moras, G., Moseler, M.: Mechano-chemical decomposition of organic friction modifiers with multiple reactive centres induces superlubricity of ta-C. Nat. Commun. 10, 1–11 (2019). https://doi.org/10.1038/s41467-018-08042-8

    Article  CAS  Google Scholar 

  13. Long, Y., Galipaud, J., Weihnacht, V., Makowski, S., Martin, J.M., Bouchet, M.I.D.B.: Achieving superlubricity using selected tribo-pairs lubricated by castor oil and unsaturated fatty acids. Tribo. Int. 169, 107462 (2022). https://doi.org/10.1016/j.triboint.2022.107462

    Article  CAS  Google Scholar 

  14. Long, Y., Wang, Y., Weihnacht, V., Makowski, S., Kubo, M., Martin, J.M., Bouchet, M.I.D.B.: Mechanism of superlubricity of a DLC/Si3N4 contact in the presence of castor oil and other green lubricants. Friction (2022). https://doi.org/10.1007/s40544-022-0601-1

    Article  Google Scholar 

  15. Salinas Ruiz, V.R., Kuwahara, T., Galipaud, J., Masenelli-Varlot, K., Hassine, M.B., Héau, C., Stoll, M., Mayrhofer, L., Moras, G., Martin, J.M., Moseler, M., Bouchet, M.I.D.B.: Interplay of mechanics and chemistry governs wear of diamond-like carbon coatings interacting with ZDDP-additivated lubricants. Nat. Commun. 12, 1–15 (2021). https://doi.org/10.1038/s41467-021-24766-6

    Article  CAS  Google Scholar 

  16. Hadnadjev, M., Vulic, T., Marinkovic-Neducin, R., Suchorski, Y., Weiss, H.: The iron oxidation state in Mg–Al–Fe mixed oxides derived from layered double hydroxides: an XPS study. Appl. Surf. Sci. 254, 4297–4302 (2008). https://doi.org/10.1016/j.apsusc.2008.01.063

    Article  CAS  Google Scholar 

  17. André, E., Vernier, C.: Some physical properties of pure ricinoleic acid: the refractive index, specific gravity, and viscosity. J. Rheol. 3, 336–340 (1932). https://doi.org/10.1122/1.2116497

    Article  Google Scholar 

  18. Rabelo, J., Batista, E., Cavaleri, F.V.W., Meirelles, A.J.: Viscosity prediction for fatty systems. J. Am. Oil Chem. Soc. 77, 1255–1262 (2000). https://doi.org/10.1007/s11746-000-0197-z

    Article  CAS  Google Scholar 

  19. Bersani, D., Lottici, P.P., Montenero, A.: Micro-Raman investigation of iron oxide films and powders produced by sol-gel syntheses. J. Raman Spectrosc. 30, 355–360 (1999). https://doi.org/10.1002/(SICI)1097-4555(199905)30:5%3c355::AID-JRS398%3e3.0.CO;2-C

    Article  CAS  Google Scholar 

  20. Shebanova, O.N., Lazor, P.: Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation. J. Raman Spectrosc. 34, 845–852 (2003). https://doi.org/10.1002/jrs.1056

    Article  CAS  Google Scholar 

  21. Ferrari, A.C.: Raman spectroscopy of graphene and graphite: disorder, electron– phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007). https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  22. Lukianova, O.A., Parkhomenko, A.A., Krasilnikov, V.V., Khmara, A.N., Kuzmenko, A.P.: New method of free silicon determination in pressureless sintered silicon nitride by Raman spectroscopy and XRD. Ceram. Int. 45, 14338–14346 (2019). https://doi.org/10.1016/j.ceramint.2019.04.148

    Article  CAS  Google Scholar 

  23. Zanocco, M., Marin, E., Boschetto, F., Adachi, T., Yamamoto, T., Kanamura, N., Zhu, W., McEntire, B.J., Bal, S.B., Ashida, R., Mazda, O., Pezzotti, G.: Surface functionalization of polyethylene by silicon nitride laser cladding. Appl. Sci. 10, 2612 (2020). https://doi.org/10.3390/app10072612

    Article  CAS  Google Scholar 

  24. Vezenov, D.V., Noy, A., Rozsnyai, L.F., Lieber, C.M.: Force titrations and ionization state sensitive imaging of functional groups in aqueous solutions by chemical force microscopy. J. Am. Chem. Soc. 119, 2006–2015 (1997). https://doi.org/10.1021/ja963375m

    Article  Google Scholar 

  25. Israelachvili, J.N., Chen, Y.L., Yoshizawa, H.: Relationship between adhesion and friction forces. J. Adhes. Sci. Technol. 8, 1231–1249 (1994). https://doi.org/10.1163/156856194X00582

    Article  CAS  Google Scholar 

  26. Wang, Y., Hayashi, K., Ootani, Y., Bai, S., Shimazaki, T., Higuchi, Y., Ozawa, N., Adachi, K., Bouchet, M.I.D.B., Martin, J.M., Kubo, M.: Role of OH termination in mitigating friction of diamond-like carbon under high load: a joint simulation and experimental study. Langmuir 37, 6292–6300 (2021). https://doi.org/10.1021/acs.langmuir.1c00727

    Article  CAS  Google Scholar 

  27. Y. Long, Green superlubricity mechanisms of OH-containing lubricants for hard carbon and Si-based materials. Doctoral dissertation, Lyon (2020)

Download references

Acknowledgements

Centre de Recherche de Solaize (CReS) of TotalEnergies, France, supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Isabel De Barros Bouchet.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 134 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Y., Martin, J.M., Dubreuil, F. et al. Achieving Superlubricity of Ricinoleic Acid in the Steel/Si3N4 Contact Under Boundary Lubrication. Tribol Lett 70, 109 (2022). https://doi.org/10.1007/s11249-022-01649-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-022-01649-5

Keywords

Navigation