Skip to main content
Log in

High-Pressure Lubrication of Polyethylethylene by Molecular Dynamics Approach

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Polyethylene (PE) and branched PE are common materials inserted inside contacts for medical and industrial applications. Consequently, their tribological properties have been extensively investigated in the past. This paper aims to determine the lubrication behavior of polyethylethylene (PEE) for iron contact and the two main factors of temperature and carbon chain length influencing the lubrication in the high-pressure lubrication regime by molecular dynamics simulations. Additionally, the influences of pressure and sliding velocity on the friction are also considered. These factors are found to be significantly influencing the lubricity. The obtained results mainly originated from shear and stretching of the PEE molecules, condensed situation of the lubricants, and adhesion between the lubricants and the iron surfaces. These observations are explained in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rabinowitz, S., Ward, I.M., Parry, J.S.C.: The effect of hydrostatic pressure on the shear yield behaviour of polymers. J. Mater. Sci. 5, 29–39 (1970)

    CAS  Google Scholar 

  2. Bowden, P.B., Jukes, J.A.: The plastic flow of isotropic polymers. J. Mater. Sci. 7, 52–63 (1972)

    CAS  Google Scholar 

  3. Aird, P.J., Cherry, B.W.: Frictional properties of branched polyethylene. I. The true area of contact. Wear 47, 231–241 (1978)

    CAS  Google Scholar 

  4. Zhan, S., Xu, H., Duan, H., Pan, L., Jia, D., Tu, J., Liu, L., Li, J.: Molecular dynamics simulation of microscopic friction mechanisms of amorphous polyethylene. Soft Matter 15, 8827–8839 (2019)

    CAS  Google Scholar 

  5. Washizu, H., Ohmori, T.: Molecular dynamics simulations of elastohydrodynamic lubrication oil film. Lubric. Sci. 22, 323–340 (2010)

    CAS  Google Scholar 

  6. Washizu, H., Ohmori, T., Suzuki, A.: Molecular origin of limiting shear stress of elastohydrodynamic lubrication oil film studied by molecular dynamics. Chem. Phys. Lett. 678, 1–4 (2017)

    CAS  Google Scholar 

  7. Zhang, H., Fukuda, M., Washizu, H., Kinjo, T., Yoshida, H., Fukuzawa, K., Itoh, S.: Shear thinning behavior of nanometer-thick perfluoropolyether films confined between corrugated solid surfaces: a coarse-grained molecular dynamics study. Tribol. Int. 93, 163–171 (2016)

    CAS  Google Scholar 

  8. Ewen, J.P., Gattinoni, C., Zhang, J., Heyes, D.M., Spikes, H.A., Dini, D.: On the effect of confined fluid molecular structure on nonequilibrium phase behavior and friction. Phys. Chem. Chem. Phys. 19, 17883–17894 (2017)

    CAS  Google Scholar 

  9. Ewen, J.P., Gao, H., Mueser, M., Dini, D.: Shear heating, flow, and friction of confined molecular fluids at high pressure. Phys. Chem. Chem. Phys. 21, 5813–5823 (2019)

    CAS  Google Scholar 

  10. Moriguchi, S., Tsujimoto, T., Sasahara, A., Kokawa, R., Onishi, H.: Nanometer-scale distribution of a lubricant modifier on iron films: a frequency-modulation atomic force microscopy study combined with a friction test. ACS Omega 4, 17593–17599 (2019)

    CAS  Google Scholar 

  11. Karuppiah, K.S.K., Bruck, A.L., Sundararajan, S., Wang, J., Lin, Z., Xu, Z.H., Li, X.: Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity. Acta Biomater. 4, 1401–1410 (2008)

    CAS  Google Scholar 

  12. Cohen, S.C., Tabor, D.: The friction and lubrication of polymers. Proc. R. Soc. A Lond. Math. Phys. Sci. 291, 186–207 (1966)

    CAS  Google Scholar 

  13. Ludema, K.C., Tabor, D.: The friction and visco-elastic properties of polymeric solids. Wear 9, 329–348 (1966)

    CAS  Google Scholar 

  14. Bahadur, S., Ludema, K.C.: The viscoelastic nature of the sliding friction of polyethylene, polypropylene and copolymers. Wear 18, 109–128 (1971)

    CAS  Google Scholar 

  15. Bahadur, S.: Dependence of polymer sliding friction on normal load and contact pressure. Wear 29, 323–336 (1974)

    CAS  Google Scholar 

  16. Briscoe, B.J., Tabor, D.: The effect of pressure on the frictional properties of polymers. Wear 34, 29–38 (1975)

    CAS  Google Scholar 

  17. Cho, D.H., Bhushan, B., Dyess, J.: Mechanisms of static and kinetic friction of polypropylene, polyethylene terephthalate, and high-density polyethylene pairs during sliding. Tribol. Int. 94, 165–175 (2016)

    CAS  Google Scholar 

  18. Towle, L.C.: Shear strength and friction measurement on thin layers under high pressure. J. Appl. Phys. 42, 2368–2376 (1971)

    CAS  Google Scholar 

  19. Towle, L.C.: Shear strength and friction measurements on polyethylene under high pressure. J. Appl. Phys. 44, 1611–1616 (1973)

    CAS  Google Scholar 

  20. Zivica, F., Babica, M., Mitrovica, S., Adamovica, D., Pelemis, S.: Friction coefficient of UHMWPE during dry reciprocating sliding. Tribol. Ind. 36, 281–286 (2014)

    Google Scholar 

  21. Flom, D.G.: Rolling friction of polymeric materials. II. Thermoplastics. . J. Appl. Phys. 32, 1426–1437 (1961)

    CAS  Google Scholar 

  22. Wrobel, G., Szymiczek, M.: Influence of temperature on friction coefficient of low-density polyethylene. J. Achiev. Mater. Manufact. Eng. 28, 31–34 (2018)

    Google Scholar 

  23. Kinsella, M.E., Lilly, B., Gardner, B.E., Jacobs, N.J.: Experimental determination of friction coefficients between thermoplastics and rapid tooled injection mold materials. Rapid Prototyping J. 11, 167–173 (2005)

    Google Scholar 

  24. Rocha, M.C.G., Moraes, L.R.D.C., Cell, N.: Thermal and mechanical properties of vinyltrimethoxysilane (VTMOS) crosslinked high molecular weight polyethylene (HMWPE). Mater. Res. 20, 1332–1339 (2017)

    CAS  Google Scholar 

  25. Eman, S.M., Khashaba, M.I., Ali, W.I.: Friction coefficient and wear displayed by the scratch of polyethylene reinforced by steel wires. Int. J. Mater. Chem. Phys. 1, 378–383 (2015)

    Google Scholar 

  26. Yousif, B.F., Alsofyani, I.M., Yusaf, T.F.: Adhesive wear and frictional characteristics of UHMWPE and HDPE sliding against different counterfaces under dry contact condition. Tribol. Mater. Surf. Interfaces 4, 78–85 (2010)

    CAS  Google Scholar 

  27. Wang, A., Essner, A., Klein, R.: Effect of contact stress on friction and wear of ultra-high molecular weight polyethylene in total hip replacement. Proc. Inst. Mech. Eng. H 215, 133–139 (2001)

    CAS  Google Scholar 

  28. Sivebaek, I.M., Samoilov, V.N., Persson, B.N.J.: Frictional properties of confined polymers. Eur. Phys. J. E 27, 37–46 (2008)

    CAS  Google Scholar 

  29. Heo, S.J., Jang, I., Barry, P.R., Phillpot, S.R., Perry, S.S., Sawyer, W.G., Sinnott, S.B.: Effect of the sliding orientation on the tribological properties of polyethylene in molecular dynamics simulations. J. Appl. Phys. 103, 083502 (2008)

    Google Scholar 

  30. Qiang, Y., Wu, W., Lu, J., Jiang, B., Ziegmann, G.: Progressive molecular rearrangement and heat generation of amorphous polyethene under sliding friction: Insight from the united-atom molecular dynamics simulations. Langmuir 36, 11303–11315 (2020)

    CAS  Google Scholar 

  31. Sawyer, W.G., Perry, S.S., Phillpot, S.R., Sinnott, S.B.: Integrating experimental and simulation length and time scales in mechanistic studies of friction. J. Phys. Condens. Matter 20, 354012 (2008)

    Google Scholar 

  32. Chiu, P.Y., Barry, P.R., Perry, S.S., Sinnott, S.B.: Influence of the molecular level structure of polyethylene and polytetrafluoroethylene on their tribological response. Tribol. Lett. 43, 193–201 (2011)

    Google Scholar 

  33. Zheng, T., Wang, S., Zhou, L., Li, X., Zhang, H.: The disentanglement and shear properties of amorphous polyethylene during friction: insights from molecular dynamics simulations. Appl. Surf. Sci. 580, 152301 (2022)

    CAS  Google Scholar 

  34. Dai, L., Satyanarayana, M.N., Sinha, S.K., Tan, V.B.C.: Identifying the mechanisms of polymer friction through molecular dynamics simulation. Langmuir 27, 14861–14867 (2011)

    CAS  Google Scholar 

  35. Washizu, H., Hyodo, S., Ohmori, S., Nishino, N., Suzuki, A.: Macroscopic no-slip boundary condition confirmed in full atomistic simulation of oil film. Tribol. Online 9, 45–50 (2014)

    Google Scholar 

  36. Washizu, H., Sanda, S., Hyodo, S., Ohmori, T., Nishino, N., Suzuki, A.: Molecular dynamics simulations of elasto-hydrodynamic lubrication and boundary lubrication for automotive tribology. J. Phys. Conf. Ser. 89, 012009–012016 (2007)

    Google Scholar 

  37. Aryanpour, M., Duin, A.C.T.V., Kubicki, J.D.: Development of a reactive force field for iron-oxyhydroxide systems. J. Phys. Chem. A 114, 6298–6307 (2010)

    CAS  Google Scholar 

  38. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 119, 1–19 (1995)

    Google Scholar 

  39. Khare, R., de Pablo, J., Yethiraj, A.: Molecular simulation and continuum mechanics study of simple fluids in non-isothermal planar Couette flows. J. Chem. Phys. 107, 2589 (1997)

    CAS  Google Scholar 

  40. Nose, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    CAS  Google Scholar 

  41. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)

    CAS  Google Scholar 

  42. Nakamura, K., Ookawa, R., Yasuda, S.: Solidification of the Lennard–Jones fluid near a wall in thermohydrodynamic lubrication. Phys. Rev. E 100, 033109–033117 (2019)

    CAS  Google Scholar 

  43. Makhnovskii, Y., Ovchinnikov, Y.K., Ovchinnikov, A.A.: The radial distribution function as a means of structural analysis for a polyethylene melt. Polym. Sci. 22, 2801–2807 (1980)

    Google Scholar 

  44. Teraoka, I.: Polymer Solutions: An Introduction to Physical Properties. John Wiley & Sons Inc., New York (2002)

    Google Scholar 

  45. Sang, L.V., Sugimura, N., Washizu, H.: Graphene as solid lubricant vertically buried into iron contact surface by annealing for superlubricity. Tribol. Int. 165, 107288 (2022)

    Google Scholar 

  46. Sang, L.V., Sugimura, N., Kosar, K., Washizu, H.: Solid lubricants of combined graphene and iron nanoparticles for study of friction and stability. Langmuir 38, 1860–1868 (2022)

    Google Scholar 

Download references

Funding

Funding was provided by the Japan Society for the Promotion of Science (Grant Nos. JP18K18813, JP19H05718, and JP20K04245), New Energy and Industrial Technology Development Organization (Grant No. JPNP07015) and the VNUHCM-University of Information Technology’s Scientific Research Support Fund (D1-2022-09). We thank Mr. Hidenori Nagahama and Mr. Haruhiko Kakutani, who are researchers at Mitsubishi Electronics and supported this study, for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Le Van Sang or Hitoshi Washizu.

Ethics declarations

Conflict of interest

All the authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katsukawa, R., Van Sang, L., Tomiyama, E. et al. High-Pressure Lubrication of Polyethylethylene by Molecular Dynamics Approach. Tribol Lett 70, 101 (2022). https://doi.org/10.1007/s11249-022-01638-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-022-01638-8

Keywords

Navigation