Skip to main content
Log in

Phononic Friction in Monolayer/Bilayer Graphene

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Herein, frictional phonon dissipation in monolayer/bilayer graphene was modeled using phonon spectra based on molecular dynamics simulations. The results indicate that the number of excited acoustic phonon modes is the primary reason for increased friction. Specifically, the frequencies of flexural acoustic modes shifted to high levels as thickness increased during the sliding process, resulting in increased friction. The increase in friction with sliding velocity is caused by an increase in the number of in-plane acoustic modes. Higher normal loads can increase both the in-plane and flexural acoustic modes, leading to increased friction. Our observations further suggest that the variation in temperature at the friction interface results from the competition between frictional energy and thermal conductivity. Both high normal loads and thick layers increase the thermal conductivity, ultimately improving the friction dissipation efficiency. Hence, it can be concluded that the increase in thermal conductivity is the reason for the counterintuitive decrease in the interfacial temperature resulting from high friction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Berman, D., Deshmukh, S.A., Sankaranarayanan, S.K., Erdemir, A., Sumant, A.V.: Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348, 1118–1122 (2015)

    Article  CAS  Google Scholar 

  2. Li, S., Li, Q., Carpick, R.W., Gumbsch, P., Liu, X.Z., Ding, X., et al.: The evolving quality of frictional contact with graphene. Nature 539, 541–545 (2016)

    Article  CAS  Google Scholar 

  3. Xu, J., Luo, T., Chen, X., Zhang, C., Luo, J.: Nanostructured tribolayer-dependent lubricity of graphene and modified graphene nanoflakes on sliding steel surfaces in humid air. Tribol. Int. 145, 106203 (2020)

    Article  CAS  Google Scholar 

  4. Kumar, D., Jain, J., Gosvami, N.N.: Macroscale to nanoscale tribology of magnesium-based alloys: a review. Tribol. Lett. 70, 1–29 (2022)

    Article  Google Scholar 

  5. Bai, L., Meng, Y., Zhang, V., Khan, Z.A.: Effect of surface topography on ZDDP Tribofilm formation during running-in stage subject to boundary lubrication. Tribol. Lett. 70, 1–16 (2022)

    Article  Google Scholar 

  6. Krim, J.: Atomic-scale origins of friction. Langmuir 12, 4564–4566 (1996)

    Article  CAS  Google Scholar 

  7. Dong, Y., Tao, Y., Feng, R., Zhang, Y., Duan, Z., Cao, H.: Phonon dissipation in friction with commensurate–incommensurate transition between graphene membranes. Nanotechnology 31, 285711 (2020)

    Article  CAS  Google Scholar 

  8. Dong, Y., Duan, Z., Tao, Y., Wei, Z., Gueye, B., Zhang, Y., et al.: Friction evolution with transition from commensurate to incommensurate contacts between graphene layers. Tribol. Int. 136, 259–266 (2019)

    Article  CAS  Google Scholar 

  9. Hu, Y.-Z., Ma, T.-B., Wang, H.: Energy dissipation in atomic-scale friction. Friction 1, 24–40 (2013)

    Article  Google Scholar 

  10. Wei, Z., Duan, Z., Kan, Y., Zhang, Y., Chen, Y.: Phonon energy dissipation in friction between graphene/graphene interface. J. Appl. Phys. 127, 015105 (2020)

    Article  CAS  Google Scholar 

  11. Dong, Y., Ding, Y., Rui, Z., Lian, F., Hui, W., Wu, J., et al.: Tuning the interfacial friction force and thermal conductance by altering phonon properties at contact interface. Nanotechnology 33, 235401 (2022)

    Article  Google Scholar 

  12. Krim, J., Solina, D., Chiarello, R.: Nanotribology of a Kr monolayer: a quartz-crystal microbalance study of atomic-scale friction. Phys. Rev. Lett. 66, 181 (1991)

    Article  CAS  Google Scholar 

  13. Cieplak, M., Smith, E.D., Robbins, M.O.: Molecular origins of friction: the force on adsorbed layers. Science 265, 1209–1212 (1994)

    Article  CAS  Google Scholar 

  14. Persson, B., Ryberg, R.: Brownian motion and vibrational phase relaxation at surfaces: CO on Ni (111). Phys. Rev. B 32, 3586 (1985)

    Article  CAS  Google Scholar 

  15. Sokoloff, J.: Possible nearly frictionless sliding for mesoscopic solids. Phys. Rev. Lett. 71, 3450 (1993)

    Article  CAS  Google Scholar 

  16. Torres, E.S., Gonçalves, S., Scherer, C., Kiwi, M.: Nanoscale sliding friction versus commensuration ratio: molecular dynamics simulations. Phys. Rev. B 73, 035434 (2006)

    Article  CAS  Google Scholar 

  17. Prasad, M.V., Bhattacharya, B.: Phononic origins of friction in carbon nanotube oscillators. Nano Lett. 17, 2131–2137 (2017)

    Article  CAS  Google Scholar 

  18. Chen, Y., Yang, J., Wang, X., Ni, Z., Li, D.: Temperature dependence of frictional force in carbon nanotube oscillators. Nanotechnology 20, 035704 (2008)

    Article  CAS  Google Scholar 

  19. Cook, E.H., Buehler, M.J., Spakovszky, Z.S.: Mechanism of friction in rotating carbon nanotube bearings. J. Mech. Phys. Solids 61, 652–673 (2013)

    Article  CAS  Google Scholar 

  20. Cannara, R.J., Brukman, M.J., Cimatu, K., Sumant, A.V., Baldelli, S., Carpick, R.W.: Nanoscale friction varied by isotopic shifting of surface vibrational frequencies. Science 318, 780–783 (2007)

    Article  CAS  Google Scholar 

  21. Wada, N., Ishikawa, M., Shiga, T., Shiomi, J., Suzuki, M., Miura, K.: Superlubrication by phonon confinement. Phys. Rev. B 97, 161403 (2018)

    Article  CAS  Google Scholar 

  22. Liu, X.-Z., Ye, Z., Dong, Y., Egberts, P., Carpick, R.W., Martini, A.: Dynamics of atomic stick-slip friction examined with atomic force microscopy and atomistic simulations at overlapping speeds. Phys. Rev. Lett. 114, 146102 (2015)

    Article  CAS  Google Scholar 

  23. Fan, X., Hu, Z., Huang, W.: In-situ TEM studies on stick-slip friction characters of sp2 nanocrystallited carbon films. Friction (2022). https://doi.org/10.1007/s40544-021-0551-z

    Article  Google Scholar 

  24. Zong, K., Qin, Z., Chu, F.: Modeling of frictional stick-slip of contact interfaces considering normal fractal contact. J. Appl. Mech. 89, 031003 (2022)

    Article  Google Scholar 

  25. Duan, Z., Wei, Z., Huang, S., Wang, Y., Sun, C., Tao, Y., et al.: Resonance in atomic-scale sliding friction. Nano Lett. 21, 4615–4621 (2021)

    Article  CAS  Google Scholar 

  26. Filleter, T., McChesney, J.L., Bostwick, A., Rotenberg, E., Emtsev, K.V., Seyller, T., et al.: Friction and dissipation in epitaxial graphene films. Phys. Rev. Lett. 102, 086102 (2009)

    Article  CAS  Google Scholar 

  27. Seol, J.H., Jo, I., Moore, A.L., Lindsay, L., Aitken, Z.H., Pettes, M.T., et al.: Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010)

    Article  CAS  Google Scholar 

  28. Chen, J., Walther, J.H., Koumoutsakos, P.: Strain engineering of Kapitza resistance in few-layer graphene. Nano Lett. 14, 819–825 (2014)

    Article  CAS  Google Scholar 

  29. Zhang, Y.-Y., Pei, Q.-X., Jiang, J.-W., Wei, N., Zhang, Y.-W.: Thermal conductivities of single-and multi-layer phosphorene: a molecular dynamics study. Nanoscale 8, 483–491 (2016)

    Article  CAS  Google Scholar 

  30. Li, X., Maute, K., Dunn, M.L., Yang, R.: Strain effects on the thermal conductivity of nanostructures. Phys. Rev. B 81, 245318 (2010)

    Article  CAS  Google Scholar 

  31. Ishikawa, M., Wada, N., Miyakawa, T., Matsukawa, H., Suzuki, M., Sasaki, N., et al.: Experimental observation of phonon generation and propagation at a Mo S 2 (0001) surface in the friction process. Phys. Rev. B 93, 201401 (2016)

    Article  CAS  Google Scholar 

  32. Wang, J., Zhu, L., Chen, J., Li, B., Thong, J.T.: Suppressing thermal conductivity of suspended tri-layer graphene by gold deposition. Adv. Mater. 25, 6884–6888 (2013)

    Article  CAS  Google Scholar 

  33. Medyanik, S.N., Liu, W.K., Sung, I.-H., Carpick, R.W.: Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 97, 136106 (2006)

    Article  CAS  Google Scholar 

  34. Zhang, H., Guo, Z., Gao, H., Chang, T.: Stiffness-dependent interlayer friction of graphene. Carbon 94, 60–66 (2015)

    Article  CAS  Google Scholar 

  35. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  CAS  Google Scholar 

  36. Lebedeva, I.V., Knizhnik, A.A., Popov, A.M., Ershova, O.V., Lozovik, Y.E., Potapkin, B.V.: Fast diffusion of a graphene flake on a graphene layer. Phys. Rev. B 82, 155460 (2010)

    Article  CAS  Google Scholar 

  37. Lindsay, L., Broido, D.: Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 81, 205441 (2010)

    Article  CAS  Google Scholar 

  38. Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991 (1988)

    Article  CAS  Google Scholar 

  39. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  CAS  Google Scholar 

  40. Singer, I.L., Pollock, H.: Fundamentals of friction: macroscopic and microscopic processes. Springer Science & Business Media (2012)

    Google Scholar 

  41. Buldum, A., Leitner, D., Ciraci, S.: Model for phononic energy dissipation in friction. Phys. Rev. B 59, 16042 (1999)

    Article  CAS  Google Scholar 

  42. Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116 (2009)

    Article  CAS  Google Scholar 

  43. Sun, J., Lu, Y., Feng, Y., Lu, Z., Zhang, G.A., Yuan, Y., et al.: Friction-load relationship in the adhesive regime revealing potential incapability of AFM investigations. Tribology Letters 68, 1–8 (2020)

    Article  Google Scholar 

  44. Xu, L., Ma, T.-B., Hu, Y.-Z., Wang, H.: Vanishing stick–slip friction in few-layer graphenes: the thickness effect. Nanotechnology 22, 285708 (2011)

    Article  CAS  Google Scholar 

  45. Ma, F., Zheng, H., Sun, Y., Yang, D., Xu, K., Chu, P.K.: Strain effect on lattice vibration, heat capacity, and thermal conductivity of graphene. Appl. Phys. Lett. 101, 111904 (2012)

    Article  CAS  Google Scholar 

  46. Bonini, N., Garg, J., Marzari, N.: Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene. Nano Lett. 12, 2673–2678 (2012)

    Article  CAS  Google Scholar 

  47. Huang, P., Castellanos-Gomez, A., Guo, D., Xie, G., Li, J.: Frictional characteristics of suspended MoS2. The Journal of Physical Chemistry C 122, 26922–26927 (2018)

    Article  CAS  Google Scholar 

  48. Mounet, N., Marzari, N.: First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 71, 205214 (2005)

    Article  CAS  Google Scholar 

  49. Woods, C., Britnell, L., Eckmann, A., Ma, R., Lu, J., Guo, H., et al.: Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451 (2014)

    Article  CAS  Google Scholar 

  50. Shibuta, Y., Elliott, J.A.: Interaction between two graphene sheets with a turbostratic orientational relationship. Chem. Phys. Lett. 512, 146–150 (2011)

    Article  CAS  Google Scholar 

  51. Lin, G.-R., Lo, T.-C., Tsai, L.-H., Pai, Y.-H., Cheng, C.-H., Wu, C.-I., et al.: Finite silicon atom diffusion induced size limitation on self-assembled silicon quantum dots in silicon-rich silicon carbide. J. Electrochem. Soc. 159, K35–K41 (2011)

    Article  CAS  Google Scholar 

  52. Patsha, A., Dhara, S.: Size-dependent localized phonon population in semiconducting Si nanowires. Nano Lett. 18, 7181–7187 (2018)

    Article  CAS  Google Scholar 

  53. Li, J., Li, Y., Cao, P.-C., Qi, M., Zheng, X., Peng, Y.-G., et al.: Reciprocity of thermal diffusion in time-modulated systems. Nat. Commun. 13, 1–8 (2022)

    CAS  Google Scholar 

  54. Guo, X., Tian, Q., Wang, Y., Liu, J., Jia, G., Dou, W., et al.: Phonon anharmonicities in 7-armchair graphene nanoribbons. Carbon 190, 312–318 (2022)

    Article  CAS  Google Scholar 

  55. Zhou, Y., Dong, Z.-Y., Hsieh, W.-P., Goncharov, A.F., Chen, X.-J.: Thermal conductivity of materials under pressure. Nature Reviews Physics 4, 1–17 (2022). https://doi.org/10.1038/s42254-022-00423-9

    Article  CAS  Google Scholar 

  56. Zhang, Y., Wang, W., Zhang, F., Huang, L., Dai, K., Li, C., et al.: Micro-diamond assisted bidirectional tuning of thermal conductivity in multifunctional graphene nanoplatelets/nanofibrillated cellulose films. Carbon 189, 265–275 (2022)

    Article  CAS  Google Scholar 

  57. Qian, X., Zhou, J., Chen, G.: Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the support provided by the National Natural Science Foundation of China (52065037, 51665030, and 52065036), Chinese Postdoctoral Science Foundation (2021MD703810), Postdoctoral Science Foundation of Gansu Academy of Sciences (BSH202101), Doctoral Foundation of Lanzhou University of Technology (062101), and Educational Unveiling Leadership Project of Gansu Province of China (2021jyjbgs01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Dong.

Ethics declarations

Conflict of Interest

The authors declare that there is no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2745 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Hui, W., Lian, F. et al. Phononic Friction in Monolayer/Bilayer Graphene. Tribol Lett 70, 72 (2022). https://doi.org/10.1007/s11249-022-01612-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-022-01612-4

Keywords

Navigation