Skip to main content
Log in

Explore the Tribological Effects of Two N-Containing Functional Groups on O/W Emulsion

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Two water-soluble N-containing additives without sulfur and phosphorus, hexanamide with tetraethylenepentamine (EEHA) and benzotriazole amide with diethylenetriamine (BTAA), were synthesized and used as additives in the oil-in-water emulsion to investigate the effect of amino and benzotriazole ring on the tribological properties of the emulsion. The results showed that EEHA/BTAA exhibited wear resistance under all tested conditions. This may be attributed to the basic amino-functional groups in the additives which reduce the corrosive wear of the base emulsion. BTAA-emulsion showed the best friction-reducing and anti-wear performance under the 3 N loading condition, which may be attributed to its benzotriazole ring, which cannot be easily decomposed and could form self-assembled layers through π–π stacking. This π–π stacking may effectively compensate for the low chemical reactivity of the benzotriazole ring, and serve as a better protective film to exert tribological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Meng, Y.G., Xu, J., Jin, Z.M., Prakash, B., Hu, Y.Z.: A review of recent advances in tribology. Friction 8, 221–300 (2021). https://doi.org/10.1007/s40544-020-0367-2

    Article  Google Scholar 

  2. Peng, Y.X., Wang, G.F., Zhu, Z.C., Chang, X.D., Lu, H., Tang, W., Jiang, F., Chen, G.A.: Effect of low temperature on tribological characteristics and wear mechanism of wire rope. Tribol. Int. 164, 107231 (2021). https://doi.org/10.1016/J.TRIBOINT.2021.107231

    Article  CAS  Google Scholar 

  3. Tian, X., Song, N.N., Yang, G.B., Zhou, C.H., Zhang, S.M., Zhang, P.Y.: Organic-sulfonate functionalized graphene as a high temperature lubricant for efficient antifriction and antiwear in water based drilling fluid. Tribol. Lett. 70, 32 (2022). https://doi.org/10.1007/S11249-022-01575-6

    Article  CAS  Google Scholar 

  4. Khanmohammadi, H., Wijanarko, W., Espallargas, N.: Ionic liquids as additives in water-based lubricants: from surface adsorption to tribofilm formation. Tribol. Lett. 68, 130 (2020). https://doi.org/10.1007/s11249-020-01377-8

    Article  CAS  Google Scholar 

  5. Xue, S.Q., Cen, Y.M., Yang, H.M., Zeng, X.Q.: The enhanced lubrication of water-based cutting fluid by functionalized GO. Tribol. Lett. 68, 19–37 (2020). https://doi.org/10.1007/s11249-020-01324-7

    Article  CAS  Google Scholar 

  6. Reddyhoff, T., Ku, I.S.Y., Holmes, A.S., Spikes, H.A.: Friction modifier behaviour in lubricated MEMS devices. Tribol. Lett. 41, 239–246 (2011). https://doi.org/10.1007/s11249-010-9704-3

    Article  CAS  Google Scholar 

  7. González, R., Ramos, D., Blanco, D., Fernández-González, A., Viesca, J.L., Hadfield, M., Battez, A.H.: Tribological performance of tributylmethylammonium bis(trifluoromethylsulfonyl)amide as neat lubricant and as an additive in a polar oil. Friction 7, 282–288 (2019). https://doi.org/10.1007/s40544-018-0231-9

    Article  CAS  Google Scholar 

  8. Faujdar, E., Negi, H., Bhonsle, A., Atray, N., Singh, R.K.: Efficiency of dodecenylsuccinic amide of n-phenyl-p-phenylenediammine as novel multifunctional lubricant additive for deposit control and lubricity. J. Surfactants Deterg. 24, 173–184 (2020). https://doi.org/10.1002/JSDE.12456

    Article  Google Scholar 

  9. Yan, J.C., Zeng, X.Q., Ren, T.H., van der Heide, E.: Boundary lubrication of stainless steel and CoCrMo alloy based on phosphorous and boron compounds in oil-in-water emulsion. Appl. Surf. Sci. 315, 415–424 (2014). https://doi.org/10.1016/j.apsusc.2014.07.160

    Article  CAS  Google Scholar 

  10. Zheng, G.L., Ding, T.M., Zheng, L., Ren, T.H.: The lubrication effectiveness of dialkylpentasulfide in synthetic ester and its emulsion. Tribol. Int. 122, 76–83 (2018). https://doi.org/10.1016/j.triboint.2018.02.041

    Article  CAS  Google Scholar 

  11. Kavita, Kuntail, J., Verma, D.K., Kumar, B., Singh, A.K., Shukla, N., Sinha, I., Rastogi, R.B.: Theoretical and experimental studies of pyranopyrazoles and theirtribological compatibility with a borate ester. Colloid Surf. A 606, 125497 (2020). https://doi.org/10.1016/j.colsurfa.2020.125497

    Article  CAS  Google Scholar 

  12. Lei, G.: Crystal structure and luminescent property of the magnesium complex [Mg(phen)(H2O)4]·[3,5-(SO3)H2cat]·2.5(phen)·3H2O. Synth. React. Inorg. Met. 46, 1–5 (2016). https://doi.org/10.1080/15533174.2013.865231

    Article  CAS  Google Scholar 

  13. Hsien, W.L.Y.: Towards Green Lubrication in Machining. Springer, Singapore (2015)

    Google Scholar 

  14. Lee, S., Heeb, R., Venkataraman, N.V., Spence, N.D.: Macroscopic tribological testingof alkanethiol self-assembled monolayers (SAMs): pin-on-disk tribometry withelastomeric sliding contacts. Tribol. Lett. 28, 229–239 (2007). https://doi.org/10.1007/s11249-007-9266-1

    Article  CAS  Google Scholar 

  15. Wu, Y.L., Sun, T., He, Z.Y., Zeng, X.Q., Ren, T.H., de Vries, E., van der Heide, E.: Study on the relationship between the tribological properties and oxidation degree of graphene derivatives in O/W emulsion. Tribol. Int. 157, 106875 (2021). https://doi.org/10.1016/j.triboint.2021.106875

    Article  CAS  Google Scholar 

  16. Liang, X.P., Yang, X.G., Wu, J.Q., Tu, Z.B., Wang, Y., Yuan, Y.: Effect of alcohol additives on the plate out oil film in cold rolling and its molecular dynamics simulations. Tribol. Trans. 62, 504–511 (2019). https://doi.org/10.1080/10402004.2019.1581312

    Article  CAS  Google Scholar 

  17. Choudhry, J., Almqvist, A., Larsson, R.: A Multi-scale Contact Temperature Model for Dry Sliding Rough Surfaces. TRIBOL LETT. 69, 128 (2021). https://doi.org/10.1007/s11249-021-01504-z

    Article  Google Scholar 

  18. Song, J.P., Liu, S.W., Rafiq, A., Gao, J.J., Lv, M.: Tribological behaviour of TiB2-HfC ceramic tool material under dry sliding condition. Ceram. Int. 46, 20320–20327 (2020). https://doi.org/10.1016/j.ceramint.2020.05.120

    Article  CAS  Google Scholar 

  19. Chen, Z.H., Bao, C.G., Wu, G.Q., Jian, Y.X., Huang, Z.F., Ma, H.Q.: Effects of YAl2 reinforced particles on the tribological properties of LA143 alloy under dry sliding condition. Wear 438–439, 203077 (2019). https://doi.org/10.1016/j.wear.2019.203077

    Article  CAS  Google Scholar 

  20. Liang, Y.N., Gao, D.R., Zhao, J.H.: Tribological properties of friction pair between 316L stainless steel and CF/PEEK with nonsmooth surface under seawater lubrication. Tribol. Trans. 63, 658–671 (2020). https://doi.org/10.1080/10402004.2020.1734704

    Article  CAS  Google Scholar 

  21. Ramesh, A., Melkote, S.N.: Modeling of white layer formationunder thermally dominant conditions in orthogonal machining of hardened AISI 52100 steel. INT J MACH TOOL MANU. 48, 402–414 (2008). https://doi.org/10.1016/j.ijmachtools.2007.09.007

    Article  Google Scholar 

  22. Wu, Y.L., Zeng, X.Q., Ren, T.H., de Vries, E., van der Heide, E.: The emulsifying and tribological properties of modified graphene oxide in oil-in-water emulsion. Tribol. Int. 105, 304–316 (2017). https://doi.org/10.1016/j.triboint.2016.10.024

    Article  CAS  Google Scholar 

  23. Kontomaris, S.V., Malamou, A.: Hertz model or Oliver & Pharr analysis? Tutorial regarding AFM nanoindentation experiments on biological samples. MATER RES EXPRESS. 7, 033001 (2020). https://doi.org/10.1088/2053-1591/ab79ce

    Article  CAS  Google Scholar 

  24. Stewart, K.L., Zhang, J., Li, S.T., Carter, P.W., Gewirth, A.A.: Anion effects on Cu-benzotriazole film formation: implications for CMP. J. Electrochem. Soc. 154, D57–D63 (2006). https://doi.org/10.1149/1.2393013

    Article  CAS  Google Scholar 

  25. Chang, Y., Yang, Z.G.: Additive fabrication of conductive patterns by a template transfer process based on benzotriazole adsorption as a separation layer. ACS Appl. Mater. Interfaces 8, 14211–14219 (2016). https://doi.org/10.1021/acsami.6b00499

    Article  CAS  Google Scholar 

  26. Andrikopoulos, P.C., McCarney, K.M., Armstrong, D.R., Littleford, R.E., Graham, D., Smith, W.E.: A density functional theory and resonance Raman study of a benzotriazole dye used in surface enhanced resonance Raman scattering. J. Mol. Struct. 789, 59–70 (2005). https://doi.org/10.1016/j.molstruc.2005.12.021

    Article  CAS  Google Scholar 

  27. Guo, X.L., Hurley, B., Yang, F., Buchheit, R.: A novel organic conversion coating based on N-benzoyl-N-phenylhydroxylamine chemistry for the corrosion protection of AA2024-T3. Electrochim. Acta 246, 197–207 (2017). https://doi.org/10.1016/j.electacta.2017.06.049

    Article  CAS  Google Scholar 

  28. Lahouij, I., Gould, B., Demas, N., Greco, A., Chen, Z., Cooper, G.D., Jackson, A., Carpick Robert, W.: Inhibition of micro-pitting by tribofilm-forming ZrO2 nanocrystal lubricant additives: a micro-pitting rig and transmission electron microscope study. Tribol. Lett. 70, 13 (2022). https://doi.org/10.1007/S11249-021-01555-2

    Article  CAS  Google Scholar 

  29. Gu, W.C., Qi, S.S., He, W.H., Chu, K., Lu, Z.B., Zhang, G.G.: Different tribological behaviors in multilayer 2D graphene and 3D graphene foam modified DLC/H-DLC film in moist air. Tribol. Lett. 70, 16 (2022). https://doi.org/10.1007/S11249-021-01556-1

    Article  CAS  Google Scholar 

  30. Naumkin, A.V., Kraut-Vass, A., Gaarenstroom, S.W., Powell. C.J.: NIST X-ray photoelectron spectroscopy database. NIST Standard Reference Database 20, Version 4.1. https://srdata.nist.gov/xps/Default.aspx. Accessed 17 Mar 2022

  31. Yang, G.B., Zhang, J.F., Zhang, S.M., Yu, L.G., Zhang, P.Y., Zhu, B.L.: Preparation of triazine derivatives and evaluation of their tribological properties as lubricant additives in poly-alpha olefin. Tribol. Int. 62, 163–170 (2013). https://doi.org/10.1016/j.triboint.2013.02.024

    Article  CAS  Google Scholar 

  32. Adam, A., Charlotte, B., Josef, B., Serhiy, B., Marcella, F., Nicole, D.: Engine oils in the field: a comprehensive tribological assessment of engine oil degradation in a passenger car. Tribol. Lett. 70, 28 (2022). https://doi.org/10.1007/S11249-022-01566-7

    Article  Google Scholar 

  33. Cutler, J.N., Sanders, J.H., Zabinski, J.S., John, P.J., McCutchen, J.R., Kasten, L.S., Tan, K.H.: Surface chemistry of new lubrication systems for high-speed spacecraft bearings. Tribol. Lett. 8, 17–23 (2000). https://doi.org/10.1023/A:1019166630462

    Article  CAS  Google Scholar 

  34. Chagas, M.R.M., Quirino, W.G., Neto, A.M.J.C., Sousa, E.A.D., Cremona, M., Rocco, M.L.M., Mota, G.V.S.: Degradation of the N, N′-bis-(1-naphthyl)-N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine by photon irradiation. Thin Solid Films 517, 4461–4463 (2009). https://doi.org/10.1016/j.tsf.2009.01.083

    Article  CAS  Google Scholar 

  35. Svintsitskiy, D.A., Kibis, L.S., Smirnov, D.A., Suboch, A.N., Stonkus, O.A., Podyacheva, O.Y., Boronin, A.I., Ismagilov, Z.R.: Spectroscopic study of nitrogen distribution in N-doped carbon nanotubes and nanofibers synthesized by catalytic ethylene-ammonia decomposition. Appl. Surf. Sci. 435, 1273–1284 (2018). https://doi.org/10.1016/j.apsusc.2017.11.244

    Article  CAS  Google Scholar 

  36. Zhao, H.Y., Neville, A., Morina, A., Vickerman, R., Durham, J.: Improved anti-shudder performance of ATFs—influence of a new friction modifier and surface chemistry. TRIBOL INT. 46, 62–72 (2011). https://doi.org/10.1016/j.triboint.2011.06.012

    Article  CAS  Google Scholar 

  37. Mangolini, F., Rossi, A., Spencer, N.D.: Influence of metallic and oxidized iron/steel on the reactivity of triphenyl phosphorothionate in oil solution. Tribol. Int. 44, 670–683 (2010). https://doi.org/10.1016/j.triboint.2010.02.009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support from Shanghai University of Engineering Science and the National Natural Science Foundation of China (51965020). The authors are also grateful to the Beijing synchrotron radiation facility and Shanghai Jiao tong University for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinglei Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

We confirm that this manuscript is the authors’ original work and has not been published nor has it been submitted simultaneously elsewhere. All authors have checked the manuscript and agreed to the submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., van der Heide, E., He, Z. et al. Explore the Tribological Effects of Two N-Containing Functional Groups on O/W Emulsion. Tribol Lett 70, 52 (2022). https://doi.org/10.1007/s11249-022-01594-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-022-01594-3

Keywords

Navigation