Skip to main content
Log in

Borophene: Provides the Possibility to Observe the Behavior of a Negative Friction Coefficient in a Rigid Interface

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

From the classic Amonton’s law, there was a positive correlation between the frictional force and the normal load when a solid surface slid. However, the negative coefficient of friction behavior found in the experiment was completely different from our perception, that is, the negative correlation between friction and normal load. Since the current experimental observations and theoretical calculation predictions of the negative friction coefficient are mostly based on the deformation of the sample layer during the friction process or the participation of lubricants such as water film, it is necessary to study the behavior of the negative friction coefficient in a purely rigid system. Through first-principles calculations, we simulated the probe in the non-jump-to-contact area and observed the behavior of the negative friction coefficient in the non-deformed borophene rigid interface, and it can be combined with traditional atomic force microscope experiments to provide experimental results. The observation of the negative friction coefficient behavior of the rigid interface provides feasibility and guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Berman, A., Drummond, C., Israelachvili, J.: Amontons’ law at the molecular level. Tribol. Lett. 4, 95–101 (1998). https://doi.org/10.1023/A:1019103205079

    Article  CAS  Google Scholar 

  2. Gao, J.P., Luedtke, W.D., Gourdon, D., Ruths, M., Israelachvili, J.N., Landman, U.: Frictional forces and Amontons’ law: From the molecular to the macroscopic scale. J Phys Chem B 108, 3410–3425 (2004). https://doi.org/10.1021/jp036362l

    Article  CAS  Google Scholar 

  3. An, R., Zhou, G., Zhu, Y., Zhu, W., Huang, L., Shah, F.U.: Friction of Ionic Liquid-Glycol ether mixtures at titanium interfaces: negative load dependence. Adv Mater Inter (2018). https://doi.org/10.1002/admi.201800263

    Article  Google Scholar 

  4. Chen, J., Gao, W.: Unconventional Behavior of Friction at the Nanoscale beyond Amontons’ Law. Chem Phys Chem 18, 2033–2039 (2017). https://doi.org/10.1002/cphc.201700378

    Article  CAS  Google Scholar 

  5. Deng, Z., Smolyanitsky, A., Li, Q., Feng, X.Q., Cannara, R.J.: Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale. Nat Mater 11, 1032–1037 (2012). https://doi.org/10.1038/nmat3452

    Article  CAS  Google Scholar 

  6. Li, H., Shi, W.H., Guo, Y.F., Guo, W.L.: Nonmonotonic interfacial friction with normal force in two-dimensional crystals. Physical Rev B (2020). https://doi.org/10.1103/PhysRevB.102.085427

    Article  Google Scholar 

  7. Liu, B., Wang, J., Zhao, S., Qu, C., Liu, Y., Ma, L., et al.: Negative friction coefficient in microscale graphite/mica layered heterojunctions. Sci Adv 6, 6787 (2020). https://doi.org/10.1126/sciadv.aaz6787

    Article  CAS  Google Scholar 

  8. Liu, Z.: The diversity of friction behavior between bi-layer graphenes. Nanotechnology 25, 075703 (2014). https://doi.org/10.1088/0957-4484/25/7/075703

    Article  CAS  Google Scholar 

  9. Mandelli, D., Ouyang, W., Hod, O., Urbakh, M.: Negative friction coefficients in superlubric graphite-hexagonal boron nitride heterojunctions. Phys Rev Lett 122, 076102 (2019). https://doi.org/10.1103/PhysRevLett.122.076102

    Article  CAS  Google Scholar 

  10. Smolyanitsky, A., Killgore, J.P.: Anomalous friction in suspended graphene. Phys. Rev. B (2012). https://doi.org/10.1103/PhysRevB.86.125432

    Article  Google Scholar 

  11. Sun, J., Lu, Y., Feng, Y., Lu, Z., Zhang, G.A., Yuan, Y., et al.: Friction-Load Relationship in the Adhesive Regime Revealing Potential Incapability of AFM Investigations. Tribol. Lett. (2020). https://doi.org/10.1007/s11249-019-1263-7

    Article  Google Scholar 

  12. Sun, J., Zhang, Y., Lu, Z., Li, Q., Xue, Q., Du, S., et al.: Superlubricity enabled by pressure-induced friction collapse. J Phys Chem Lett 9, 2554–2559 (2018). https://doi.org/10.1021/acs.jpclett.8b00877

    Article  CAS  Google Scholar 

  13. Sun, J., Zhang, Y., Lu, Z., Xue, Q., Wang, L.: Attraction induced frictionless sliding of rare gas monolayer on metallic surfaces: an efficient strategy for superlubricity. Phys Chem Chem Phys 19, 11026–11031 (2017). https://doi.org/10.1039/c6cp08857k

    Article  CAS  Google Scholar 

  14. Thormann, E.: Negative friction coefficients. Nat Mater 12, 468 (2013). https://doi.org/10.1038/nmat3656

    Article  CAS  Google Scholar 

  15. Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J.: The nonlinear nature of friction. Nature 430, 525–528 (2004). https://doi.org/10.1038/nature02750

    Article  CAS  Google Scholar 

  16. Ye, Z., Martini, A.: Atomistic simulation of the load dependence of nanoscale friction on suspended and supported graphene. Langmuir 30, 14707–14711 (2014). https://doi.org/10.1021/la503329u

    Article  CAS  Google Scholar 

  17. Deng, Z., Klimov, N.N., Solares, S.D., Li, T., Xu, H., Cannara, R.J.: Nanoscale interfacial friction and adhesion on supported versus suspended monolayer and multilayer graphene. Langmuir 29, 235–243 (2013). https://doi.org/10.1021/la304079a

    Article  CAS  Google Scholar 

  18. Righi, M.C., Ferrario, M.: Pressure induced friction collapse of rare gas boundary layers sliding over metal surfaces. Phys Rev Lett 99, 176101 (2007). https://doi.org/10.1103/PhysRevLett.99.176101

    Article  CAS  Google Scholar 

  19. Sun, J., Chang, K., Mei, D., Lu, Z., Pu, J., Xue, Q., et al.: Mutual identification between the pressure-induced superlubricity and the image contrast inversion of carbon nanostructures from afm technology. J Phys Chem Lett 10, 1498–1504 (2019). https://doi.org/10.1021/acs.jpclett.9b00155

    Article  CAS  Google Scholar 

  20. Sun, J., Zhang, Y., Feng, Y., Lu, Z., Xue, Q., Du, S., et al.: How vertical compression triggers lateral interlayer slide for metallic molybdenum disulfide? Tribol. Lett. (2017). https://doi.org/10.1007/s11249-017-0971-0

    Article  Google Scholar 

  21. Erts, D., Lohmus, A., Lohmus, R., Olin, H., Pokropivny, A.V., Ryen, L., et al.: Force interactions and adhesion of gold contacts using a combined atomic force microscope and transmission electron microscope. Appl. Surf. Sci. 188, 460–466 (2002). https://doi.org/10.1016/S0169-4332(01)00933-3

    Article  CAS  Google Scholar 

  22. Landman, U., Luedtke, W.D., Burnham, N.A., Colton, R.J.: Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 248, 454–461 (1990). https://doi.org/10.1126/science.248.4954.454

    Article  CAS  Google Scholar 

  23. Jiang, X., Lu, Z., Zhang, R.: The unusual tribological properties of graphene/antimonene heterojunctions: a first-principles investigation. Materials (Basel) (2021). https://doi.org/10.3390/ma14051201

    Article  Google Scholar 

  24. Li, X., Zhang, D.K., Lee, K.R.: Exploring the different roles of graphene and its derivatives as nano-additives at amorphous carbon surface through reactive molecular dynamics approach. Comp Mater Sci (2021). https://doi.org/10.1016/j.commatsci.2021.110499

    Article  Google Scholar 

  25. Zhang, R., Chen, Q., Fan, X., He, Z., Xiong, L., Shen, M.: In Situ Friction-Induced Graphene Originating from Methanol at the Sliding Interface between the WC Self-Mated Tribo-Pair and Its Tribological Performance. Langmuir 36, 3887–3893 (2020). https://doi.org/10.1021/acs.langmuir.9b03963

    Article  CAS  Google Scholar 

  26. Zhang, R., Yang, X., Pu, J., He, Z., Xiong, L.: Extraordinary macroscale lubricity of sonication-assisted fabrication of MoS2 nano-ball and investigation of in situ formation mechanism of graphene induced by tribochemical reactions. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.145456

    Article  Google Scholar 

  27. Leng, S., Sun, X., Yang, Y., Zhang, R.: Borophene as an anode material for Zn-ion batteries: a first-principles investigation. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab1a88

    Article  Google Scholar 

  28. Kiraly, B., Liu, X., Wang, L., Zhang, Z., Mannix, A.J., Fisher, B.L., et al.: Borophene Synthesis on Au(111). ACS Nano 13, 3816–3822 (2019). https://doi.org/10.1021/acsnano.8b09339

    Article  CAS  Google Scholar 

  29. Feng, B., Sugino, O., Liu, R.Y., Zhang, J., Yukawa, R., Kawamura, M., et al.: Dirac Fermions in Borophene. Phys Rev Lett 118, 096401 (2017). https://doi.org/10.1103/PhysRevLett.118.096401

    Article  Google Scholar 

  30. Gao, M., Yan, X.W., Wang, J., Lu, Z.Y., Xiang, T.: Electron-phonon coupling in a honeycomb borophene grown on Al(111) surface. Phys Rev B (2019). https://doi.org/10.1103/PhysRevB.100.024503

    Article  Google Scholar 

  31. Li, W.B., Kong, L.J., Chen, C.Y., Gou, J., Sheng, S.X., Zhang, W.F., et al.: Experimental realization of honeycomb borophene. Science Bulletin 63, 282–286 (2018). https://doi.org/10.1016/j.scib.2018.02.006

    Article  CAS  Google Scholar 

  32. Ren, M., Zhang, L., Zhu, Y., Shi, J., Zhao, X., Ren, X., et al.: Highly efficient catalytic properties of Sc and Fe single atoms stabilized on a honeycomb borophene/Al(111) heterostructure via a dual charge transfer effect. Nanoscale 13, 5875–5882 (2021). https://doi.org/10.1039/d0nr08065a

    Article  CAS  Google Scholar 

  33. Li, J.Z., Tritsaris, G.A., Zhang, X.Y., Shi, B.W., Yang, C., Liu, S.Q., et al.: Monolayer honeycomb borophene: A promising anode material with a record capacity for lithium-ion and sodium-ion batteries. J Electrochem Soc (2020). https://doi.org/10.1149/1945-7111/ab8a9b

    Article  Google Scholar 

  34. Lin, T., Chen, I.W., Liu, F., Yang, C., Bi, H., Xu, F., et al.: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513 (2015). https://doi.org/10.1126/science.aab3798

    Article  CAS  Google Scholar 

  35. Lee, C.C., Feng, B.J., D’angelo, M., Yukawa, R., Liu, R.Y., Kondo, T., et al.: Peculiar bonding associated with atomic doping and hidden honeycombs in borophene. Phys Rev B (2018). https://doi.org/10.1103/PhysRevB.97.075430

    Article  Google Scholar 

  36. Yin, Y., Li, D., Hu, Y., Ding, G., Zhou, H., Zhang, G.: Phonon stability and phonon transport of graphene-like borophene. Nanotechnology 31, 315709 (2020). https://doi.org/10.1088/1361-6528/ab824c

    Article  CAS  Google Scholar 

  37. Wang, Z.-Q., Lü, T.-Y., Wang, H.-Q., Feng, Y.P., Zheng, J.-C.: Review of borophene and its potential applications. Front Phys (2019). https://doi.org/10.1007/s11467-019-0884-5

    Article  Google Scholar 

  38. Yan, L., Liu, P.F., Li, H.T., Tang, Y., He, J.J., Huang, X.Y., et al.: Theoretical dissection of superconductivity in two-dimensional honeycomb borophene oxide B2O crystal with a high stability. NPJ Comput. Mater. (2020). https://doi.org/10.1038/s41524-020-00365-9

    Article  Google Scholar 

  39. Lee, A.J., Sakai, Y., Chelikowsky, J.R.: Simulating contrast inversion in atomic force microscopy imaging with real-space pseudopotentials. Phys Rev B (2017). https://doi.org/10.1103/PhysRevB.95.081401

    Article  Google Scholar 

  40. Gross, L., Mohn, F., Moll, N., Liljeroth, P., Meyer, G.: The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009). https://doi.org/10.1126/science.1176210

    Article  CAS  Google Scholar 

  41. Sakai, Y., Lee, A.J., Chelikowsky, J.R.: First-Principles Atomic force microscopy image simulations with density embedding theory. Nano Lett 16, 3242–3246 (2016). https://doi.org/10.1021/acs.nanolett.6b00741

    Article  CAS  Google Scholar 

  42. Xu, Y.P., Cheng, Z.W., Zhu, X.H., Lu, Z.B., Zhang, G.A.: Ultra-Low Friction of Graphene/Honeycomb Borophene Heterojunction. Tribol. Lett. (2021). https://doi.org/10.1007/s11249-021-01418-w

    Article  Google Scholar 

  43. Hohenberg, P., Kohn, W.: Inhomogeneous Electron Gas. Phys Rev 136, B864–B871 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  44. Ayers, P.W., Levy, M.: Perspective on Density functional approach to the frontier-electron theory of chemical reactivity. Theoretical Chemistry Accounts: Theory, Computation, and Modeling 103, 353–360 (2000). https://doi.org/10.1007/s002149900093

    Article  CAS  Google Scholar 

  45. Guo, Y., Qiu, J., Guo, W.: Reduction of interfacial friction in commensurate graphene/h-BN heterostructures by surface functionalization. Nanoscale 8, 575–580 (2016). https://doi.org/10.1039/c5nr05806f

    Article  CAS  Google Scholar 

  46. Liang, T., Sawyer, W.G., Perry, S.S., Sinnott, S.B., Phillpot, S.R.: First-principles determination of static potential energy surfaces for atomic friction inMoS2andMoO3. Phys Rev B (2008). https://doi.org/10.1103/PhysRevB.77.104105

    Article  Google Scholar 

  47. Wang, L.F., Ma, T.B., Hu, Y.Z., Zheng, Q., Wang, H., Luo, J.: Superlubricity of two-dimensional fluorographene/MoS2 heterostructure: a first-principles study. Nanotechnology 25, 385701 (2014). https://doi.org/10.1088/0957-4484/25/38/385701

    Article  CAS  Google Scholar 

  48. Wang, M.Y., Li, C.H., Abernathy, D.L., Song, Y., Carr, S.V., Lu, X.Y., et al.: Neutron scattering studies of spin excitations in superconducting Rb082Fe168Se2. Phys. Rev. B (2012). https://doi.org/10.1103/PhysRevB.86.024502

    Article  Google Scholar 

  49. Zilibotti, G., Righi, M.C.: Ab initio calculation of the adhesion and ideal shear strength of planar diamond interfaces with different atomic structure and hydrogen coverage. Langmuir 27, 6862–6867 (2011). https://doi.org/10.1021/la200783a

    Article  CAS  Google Scholar 

  50. Hirshfeld, F.L.: Bonded-atom fragments for describing molecular charge-densities. Theor Chim Acta 44, 129–138 (1977). https://doi.org/10.1007/Bf00549096

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 11972344).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhibin Lu or Guangan Zhang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 346 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhu, X., Cheng, Z. et al. Borophene: Provides the Possibility to Observe the Behavior of a Negative Friction Coefficient in a Rigid Interface. Tribol Lett 70, 45 (2022). https://doi.org/10.1007/s11249-022-01586-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-022-01586-3

Keywords

Navigation