Skip to main content
Log in

Ionic Liquids Based on Chromotropic Acid: Excellent Lubricating Additives for Aqueous System

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this paper, four ionic liquids based on chromotropate (CAILs) were prepared and applied to heighten the tribological performance of aqueous system on different metal friction contacts. Taking for the potential choice for water-based lubricating additive, CAILs exhibited excellent water solubility and corrosion resistance. Tribological results showed that the CAILs, especially the phenolic hydroxyl group decorated samples (TsnN4444 and TsnP4444), demonstrating extremely effective lubricating properties with the efficient friction and wear descent (69% and 83% for Fe, 47% and 94% for Cu, 74% and 69% for Al, respectively). Especially, the excellent load-carrying capacity was also presented with the highest PB (833 N) and PD (1568 N) values for TsnP4444. It is speculated that the CAIL molecular adsorption on the interface and further generation of tribochemical films are beneficial for their lubricating effects, resulting from the systematic discussion and analysis of CA, QCM, SEM, XPS, and FIB-TEM tests. However, TsN4444 and TsP4444 showed less effective lubricating performances and poor load-carrying capacities due to tribocorrosion of hydroxyl groups at the interface.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yang, Z., Sun, C., Zhang, C., Zhao, S., Cai, M., Liu, Z., Yu, Q.: Amino acid ionic liquids as anticorrosive and lubricating additives for water and their environmental impact. Tribol. Int. 153, 106663 (2021). https://doi.org/10.1016/j.triboint.2020.106663

    Article  CAS  Google Scholar 

  2. Dong, R., Yu, Q., Bai, Y., Wu, Y., Ma, Z., Zhang, J., Zhang, C., Yu, B., Zhou, F., Liu, W., Cai, M.: Towards superior lubricity and anticorrosion performances of proton-type ionic liquids additives for water-based lubricating fluids. Chem. Eng. J. 383, 123201 (2020). https://doi.org/10.1016/j.cej.2019.123201

    Article  CAS  Google Scholar 

  3. Wang, Y., Yu, Q., Ma, Z., Huang, G., Cai, M., Zhou, F., Liu, W.: Significant enhancement of anti-friction capability of cationic surfactant by phosphonate functionality as additive in water. Tribol. Int. 112, 86–93 (2017). https://doi.org/10.1016/j.triboint.2017.03.034

    Article  CAS  Google Scholar 

  4. Fan, M., Du, X., Ma, L., Wen, P., Zhang, S., Dong, R., Sun, W., Yang, D., Zhou, F., Liu, W.: In situ preparation of multifunctional additives in water. Tribol. Int. 130, 317–323 (2019). https://doi.org/10.1016/j.triboint.2018.09.020

    Article  CAS  Google Scholar 

  5. Yang, D., Du, X., Li, W., Han, Y., Ma, L., Fan, M., Zhou, F., Liu, W.: Facile preparation and tribological properties of water-based naphthalene dicarboxylate ionic liquid lubricating additives. Tribol. Lett. 68, 84 (2020). https://doi.org/10.1007/s11249-020-01323-8

    Article  CAS  Google Scholar 

  6. Phillips, B.S., Zabinski, J.S.: Ionic liquid lubrication effects on ceramics in a water environment. Tribol. Lett. 17, 533–541 (2004). https://doi.org/10.1023/B:TRIL.0000044501.64351.68

    Article  CAS  Google Scholar 

  7. Tomala, A., Karpinska, A., Werner, W.S.M., Olver, A., Störi, H.: Tribological properties of additives for water-based lubricants. Wear 269, 804–810 (2010). https://doi.org/10.1016/j.wear.2010.08.008

    Article  CAS  Google Scholar 

  8. Guo, P., Chen, L., Wang, J., Geng, Z., Lu, Z., Zhang, G.: Enhanced tribological performance of aminated nano-silica modified graphene oxide as water-based lubricant additive. ACS Appl. Nano Mater. 1, 6444–6453 (2018). https://doi.org/10.1021/acsanm.8b01653

    Article  CAS  Google Scholar 

  9. Del Sol, I., Gámez, A.J., Rivero, A., Iglesias, P.: Tribological performance of ionic liquids as additives of water-based cutting fluids. Wear 426–427, 845–852 (2019). https://doi.org/10.1016/j.wear.2019.01.109

    Article  CAS  Google Scholar 

  10. Arcifa, A., Rossi, A., Ramakrishna, S.N., Espinosa-Marzal, R., Sheehan, A., Spencer, N.D.: Lubrication of Si-based tribopairs with a hydrophobic ionic liquid: the multiscale influence of water. J. Phys. Chem. C 122, 7331–7343 (2018). https://doi.org/10.1007/s11249-020-01323-8

    Article  CAS  Google Scholar 

  11. Wen, P., Lei, Y., Li, W., Fan, M.: Synergy between covalent organic frameworks and surfactants to promote water-based lubrication and corrosion resistance. ACS Appl. Nano Mater. 3, 1400–1411 (2020). https://doi.org/10.1021/acsanm.9b02198

    Article  CAS  Google Scholar 

  12. Davis, B., Schueller, J.K., Huang, Y.: Study of ionic liquid as effective additive for minimum quantity lubrication during titanium machining. MFGLET 5, 1–6 (2015). https://doi.org/10.1016/j.mfglet.2015.04.001

    Article  Google Scholar 

  13. Pham, M.-Q., Yoon, H.-S., Khare, V., Ahn, S.-H.: Evaluation of ionic liquids as lubricants in micro milling—process capability and sustainability. J. Clean. Prod. 76, 167–173 (2014). https://doi.org/10.1016/j.jclepro.2014.04.055

    Article  CAS  Google Scholar 

  14. Kajdas, C.: Additives for metalworking lubricants—a review. Lubr. Sci. 1, 385–409 (1989). https://doi.org/10.1002/ls.3010010406

    Article  CAS  Google Scholar 

  15. Ye, C., Liu, W., Chen, Y., Yu, L.: Room-temperature ionic liquids: a novel versatile lubricant. Chem. Comm. (2001). https://doi.org/10.1039/B106935G

    Article  Google Scholar 

  16. Jiménez, A.E., Bermúdez, M.D., Iglesias, P., Carrión, F.J., Martínez-Nicolás, G.: 1-N-alkyl -3-methylimidazolium ionic liquids as neat lubricants and lubricant additives in steel–aluminium contacts. Wear 260, 766–782 (2006). https://doi.org/10.1016/j.wear.2005.04.016

    Article  CAS  Google Scholar 

  17. Amiril, S.A.S., Rahim, E.A., Syahrullail, S.: A review on ionic liquids as sustainable lubricants in manufacturing and engineering: recent research, performance, and applications. J. Clean. Prod. 168, 1571–1589 (2017). https://doi.org/10.1016/j.jclepro.2017.03.197

    Article  CAS  Google Scholar 

  18. Bermúdez, M.-D., Jiménez, A.-E., Sanes, J., Carrión, F.-J.: Ionic liquids as advanced lubricant fluids. Molecules 14, 2888–2908 (2009). https://doi.org/10.3390/molecules14082888

    Article  CAS  Google Scholar 

  19. Cooper, P.K., Wear, C.J., Li, H., Atkin, R.: Ionic liquid lubrication of stainless steel: friction is inversely correlated with interfacial liquid nanostructure. ACS Sustain. Chem. Eng. 5, 11737–11743 (2017). https://doi.org/10.1021/acssuschemeng.7b03262

    Article  CAS  Google Scholar 

  20. Zhou, F., Liang, Y., Liu, W.: Ionic liquid lubricants: designed chemistry for engineering applications. Chem. Soc. Rev. 38, 2590–2599 (2009). https://doi.org/10.1039/B817899M

    Article  CAS  Google Scholar 

  21. Mu, L., Shi, Y., Guo, X., Wu, J., Ji, T., Chen, L., Feng, X., Lu, X., Hua, J., Zhu, J.: Enriching heteroelements in lignin as lubricating additives for bioionic liquids. ACS Sustain. Chem. Eng. 4, 3877–3887 (2016). https://doi.org/10.1021/acssuschemeng.6b00669

    Article  CAS  Google Scholar 

  22. Pejaković, V., Tomastik, C., Dörr, N., Kalin, M.: Influence of concentration and anion alkyl chain length on tribological properties of imidazolium sulfate ionic liquids as additives to glycerol in steel–steel contact lubrication. Tribol. Int. 97, 234–243 (2016). https://doi.org/10.1016/j.triboint.2016.01.034

    Article  CAS  Google Scholar 

  23. Cai, M., Liang, Y., Zhou, F., Liu, W.: A novel imidazolium salt with antioxidation and anticorrosion dual functionalities as the additive in poly(ethylene glycol) for steel/steel contacts. Wear 306, 197–208 (2013). https://doi.org/10.1016/j.wear.2012.09.001

    Article  CAS  Google Scholar 

  24. Barnhill, W.C., Qu, J., Luo, H., Meyer, H.M., Ma, C., Chi, M., Papke, B.: Phosphonium-organophosphate ionic liquids as lubricant additives: effects of cation structure on physicochemical and tribological characteristics. ACS Appl. Mater. Interfaces. 6, 22585–22593 (2014). https://doi.org/10.1021/am506702u

    Article  CAS  Google Scholar 

  25. Stump, B.C., Zhou, Y., Luo, H., Leonard, D.N., Viola, M.B., Qu, J.: New functionality of ionic liquids as lubricant additives: mitigating rolling contact fatigue. ACS Appl. Mater. Interfaces. 11, 30484–30492 (2019). https://doi.org/10.1021/acsami.9b10001

    Article  CAS  Google Scholar 

  26. Naveed, T., Zahid, R., Mufti, R.A., Waqas, M., Hanif, M.T.: A review on tribological performance of ionic liquids as additives to bio lubricants. Proc Inst Mech Eng J: J Eng Tribol 235, 1782–1806 (2020). https://doi.org/10.1177/1350650120973805

    Article  CAS  Google Scholar 

  27. Dong, R., Wen, P., Zhang, S., Zhang, C., Sun, W., Fan, M., Yang, D., Zhou, F., Liu, W.: The synthesis and tribological properties of dicarboxylic acid ionic liquids. Tribol. Int. 114, 132–140 (2017). https://doi.org/10.1016/j.triboint.2017.04.012

    Article  CAS  Google Scholar 

  28. Zheng, G., Zhang, G., Ding, T., Xiang, X., Li, F., Ren, T., Liu, S., Zheng, L.: Tribological properties and surface interaction of novel water-soluble ionic liquid in water-glycol. Tribol. Int. 116, 440–448 (2017). https://doi.org/10.1016/j.triboint.2017.08.001

    Article  CAS  Google Scholar 

  29. Khanmohammadi, H., Wijanarko, W., Espallargas, N.: Ionic liquids as additives in water-based lubricants: from surface adsorption to tribofilm formation. Tribol. Lett. 68, 130 (2020). https://doi.org/10.1007/s11249-020-01377-8

    Article  CAS  Google Scholar 

  30. Li, Y., Zhang, S., Ding, Q., Feng, D., Qin, B., Hu, L.: The corrosion and lubrication properties of 2-mercaptobenzothiazole functionalized ionic liquids for bronze. Tribol. Int. 114, 121–131 (2017). https://doi.org/10.1016/j.triboint.2017.04.022

    Article  CAS  Google Scholar 

  31. Espinosa, T., Jiménez, M., Sanes, J., Jiménez, A.-E., Iglesias, M., Bermúdez, M.-D.: Ultra-low friction with a protic ionic liquid boundary film at the water-lubricated Sapphire-stainless steel interface. Tribol. Lett. 53, 1–9 (2014). https://doi.org/10.1007/s11249-013-0238-3

    Article  CAS  Google Scholar 

  32. Liu, W., Ye, C., Gong, Q., Wang, H., Wang, P.: Tribological performance of room-temperature ionic liquids as lubricant. Tribol. Lett. 13, 81–85 (2002). https://doi.org/10.1023/A:1020148514877

    Article  CAS  Google Scholar 

  33. Wang, H., Lu, Q., Ye, C., Liu, W., Cui, Z.: Friction and wear behaviors of ionic liquid of alkylimidazolium hexafluorophosphates as lubricants for steel/steel contact. Wear 256, 44–48 (2004). https://doi.org/10.1016/S0043-1648(03)00255-2

    Article  CAS  Google Scholar 

  34. Wang, Y., Yu, Q., Cai, M., Shi, L., Zhou, F., Liu, W.: Synergy of lithium salt and non-ionic surfactant for significantly improved tribological properties of water-based fluids. Tribol. Int. 113, 58–64 (2017). https://doi.org/10.1016/j.triboint.2016.10.035

    Article  CAS  Google Scholar 

  35. Paruch, K., Vyklický, L., Katz, T.J., Incarvito, C.D., Rheingold, A.L.: Expeditious procedure to synthesize ethers and esters of tri- and tetrahydroxy[6]helicenebisquinones from the Ddye-intermediates disodium 4-hydroxy- and 4,5-dihydroxynaphthalene-2,7-disulfonates. J. Org. Chem. 65, 8774–8782 (2000). https://doi.org/10.1021/jo001356w

    Article  CAS  Google Scholar 

  36. Gusain, R., Bakshi, P.S., Panda, S., Sharma, O.P., Gardas, R., Khatri, O.P.: Physicochemical and tribophysical properties of trioctylalkylammonium bis(salicylato)borate (N888n-BScB) ionic liquids: effect of alkyl chain length. Phys. Chem. Chem. Phys. 19, 6433–6442 (2017). https://doi.org/10.1039/C6CP05990B

    Article  CAS  Google Scholar 

  37. Matos, M., Lobo, A., Benito, J.M., Coca, J., Pazos, C.: Extending the useful life of metalworking fluids in a copper wire drawing industry by monitoring their functional properties. Tribol. Trans. 55, 685–692 (2012). https://doi.org/10.1080/10402004.2012.69458039

    Article  CAS  Google Scholar 

  38. Khan, A., Sharma, O.P., Khatri, O.P.: Ionic liquids-based aqueous lubricants: emulsion stability to enhancement of surface wettability and tribological properties. Ind. Eng. Chem. Res. 60, 333–342 (2020). https://doi.org/10.1021/acs.iecr.0c05046

    Article  CAS  Google Scholar 

  39. Huang, G., Yu, Q., Cai, M., Zhou, F., Liu, W.: Highlighting the effect of interfacial interaction on tribological properties of supramolecular gel lubricants. Adv. Mater. Interfaces. 3, 1500489 (2016). https://doi.org/10.1002/admi.201500489

    Article  CAS  Google Scholar 

  40. Seed, C.M., Acharya, B., Krim, J.: QCM study of tribotronic control in ionic liquids and nanoparticle suspensions. Tribol. Lett. 69, 83 (2021). https://doi.org/10.1007/s11249-021-01461-7

    Article  CAS  Google Scholar 

  41. Krim, J.: Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films. Adv. Phys. 61, 155–323 (2012). https://doi.org/10.1080/00018732.2012.706401

    Article  CAS  Google Scholar 

  42. Huang, G., Yu, Q., Cai, M., Zhou, F., Liu, W.: Investigation of the lubricity and antiwear behavior of guanidinium ionic liquids at high temperature. Tribol. Int 114, 65–76 (2017). https://doi.org/10.1016/j.triboint.2017.04.010

    Article  CAS  Google Scholar 

  43. Kumara, C., Speed, L., Viola, M.B., Huo, H., Qu, J.: Using ionic liquid additive to enhance lubricating performance for low-viscosity engine oil. ACS Sust. Chem. Eng 9, 7198–7205 (2021). https://doi.org/10.1021/acssuschemeng.1c00745

    Article  CAS  Google Scholar 

  44. Dong, R., Bao, L., Yu, Q., Wu, Y., Ma, Z., Zhang, J., Cai, M., Zhou, F., Liu, W.: Effect of electric potential and chain length on tribological performances of ionic liquids as additives for aqueous systems and molecular dynamics simulations. ACS Appl. Mater. Inter. 12, 39910–39919 (2020). https://doi.org/10.1021/acsami.0c11016

    Article  CAS  Google Scholar 

  45. Yu, Q., Wang, Y., Huang, G., Ma, Z., Shi, Y., Cai, M., Zhou, F., Liu, W.: Task-specific oil-miscible ionic liquids lubricate steel/light metal alloy: a tribochemistry study. Adv. Mater. Interfaces 5, 1800791 (2018). https://doi.org/10.1002/admi.201800791

    Article  CAS  Google Scholar 

  46. Qu, J., Barnhill, W.C., Luo, H., Meyer, H.M., III., Leonard, D.N., Landauer, A.K., Kheireddin, B., Gao, H., Papke, B.L., Dai, S.: Synergistic effects between phosphonium-alkylphosphate ionic liquids and zinc dialkyldithiophosphate (ZDDP) as lubricant additives. Adv. Mater. 27, 4767–4774 (2015). https://doi.org/10.1002/adma.201502037

    Article  CAS  Google Scholar 

  47. Maurya, U., Vasu, V., Kashinath, D.: Ionic liquid-nanoparticle-based hybrid-nanolubricant additives for potential enhancement of tribological properties of lubricants and their comparative study with ZDDP. Tribol. Lett. 70, 1–17 (2022). https://doi.org/10.1007/s11249-021-01551-6

    Article  CAS  Google Scholar 

  48. Cai, M., Yu, Q., Zhou, F., Liu, W.: Physicochemistry aspects on frictional interfaces. Friction 5, 361–382 (2017). https://doi.org/10.1007/s40544-017-0191-5

    Article  Google Scholar 

  49. Nakayama, K., Martin, J.M.: Tribochemical reactions at and in the vicinity of a sliding contact. Wear 261, 235–240 (2006). https://doi.org/10.1016/j.wear.2005.10.012

    Article  CAS  Google Scholar 

  50. Guo, W., Zhou, Y., Sang, X., Leonard, D.N., Qu, J., Poplawsky, J.D.: Atom probe tomography unveils formation mechanisms of wear-protective tribofilms by ZDDP, ionic liquid, and their combination. ACS Appl. Mater. Interfaces 9, 23152–23163 (2017). https://doi.org/10.1021/acsami.7b04719

    Article  CAS  Google Scholar 

  51. Qu, J., Bansal, D.G., Yu, B., Howe, J.Y., Luo, H., Dai, S., Li, H., Blau, P.J., Bunting, B.G., Mordukhoxich, G., Smolenski, D.J.: Antiwear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive. ACS Appl. Mater. Interfaces 4, 997–1002 (2012). https://doi.org/10.1021/am201646k

    Article  CAS  Google Scholar 

  52. Qu, J., Chi, M., Meyer, H.M., III., Blau, P.J., Dai, S., Luo, H.: Nanostructure and composition of tribo-boundary films formed in ionic liquid lubrication. Tribol. Lett. 43, 205–211 (2011). https://doi.org/10.1007/s11249-011-9800-z

    Article  CAS  Google Scholar 

  53. Zhou, Y., Leonard, D.N., Guo, W., Qu, J.: Understanding tribofilm formation mechanisms in ionic liquid lubrication. Sci. Rep. 7, 1–8 (2017). https://doi.org/10.1038/s41598-017-09029-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the finance funded by the NSFC (Grant No. 52175156 and 52105168), the science and technology project in Shaanxi (Grant No. 2021GY-157), the open project of State Key Laboratory of Solid Lubrication (Grant No. LSL-1812), the Scientific Research Foundation of Shaanxi Provincial Key Laboratory (Grant No. 19JS004) and the Shaanxi Provincial Education Department Foundation (Grant No. 21JP003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Dong or Mingjin Fan.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4854 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Gao, P., Ma, L. et al. Ionic Liquids Based on Chromotropic Acid: Excellent Lubricating Additives for Aqueous System. Tribol Lett 70, 56 (2022). https://doi.org/10.1007/s11249-022-01585-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-022-01585-4

Keywords

Navigation