Skip to main content

Increased Sliding Friction of a Lubricated Soft Solid Using an Embedded Structure

Abstract

Controlling the lubricated sliding friction of compliant contacts is important for many mechanical and biological systems. Multiphase materials have been shown to exhibit varied lubricated friction responses when compared to controls of just one phase of the material. In this work, we describe a structured two-phase material composed of a plastic mesh embedded in a compliant elastomer matrix. This embedded mesh structure (EMS) exhibits increased lubricated sliding friction for a number of load, velocity, and lubricant viscosity conditions. The observed friction enhancement appears to be a result of the EMS sample transitioning to the mixed lubrication regime under conditions in which the control is in the elastohydrodynamic lubrication regime. Simulations suggest that the difference in lubrication regimes for the EMS sample compared to the unstructured control comes from areas of high contact pressure induced by the increased local contact stiffness of the material near the embedded mesh. We hypothesize that these areas of high pressure can lead to the destabilization of lubricant films under conditions where the control films are stable, leading to the difference in lubrication regime behaviors observed.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Manning, D.P., Jones, C., Rowland, F.J., Roff, M.: The surface roughness of a rubber soling material determines the coefficient of friction on water-lubricated surfaces. J. Saf. Res. 29(4), 275–283 (1998)

    Google Scholar 

  2. Li, K.W., Chen, C.J.: The effect of shoe soling tread groove width on the coefficient of friction with different sole materials, floors, and contaminants. Appl. Ergon. 35(6), 499–507 (2004)

    Google Scholar 

  3. Harrin, E.: Low tire friction and cornering forces on a wet surface. Wear 2(6), 492 (1959)

    Google Scholar 

  4. Sabey, B.E., Lupton, G.N.: Friction on wet surfaces of tire-tread-type vulcanizates. Rubber Chem. Technol. 37(4), 878–893 (1964)

    CAS  Google Scholar 

  5. Grosch, K.A., Schallamach, A.: Tire friction on wet roads. Rubber Chem. Technol. 49(3), 862–908 (1976)

    CAS  Google Scholar 

  6. Klüppel, M., Bomal, Y., Le Gal, A., Guy, L., Orange, G.: Modelling of sliding friction for carbon black and silica filled elastomers on road tracks. Wear 264(7–8), 606–615 (2007)

    Google Scholar 

  7. Wang, Y.X., Ma, J.H., Zhang, L.Q., Wu, Y.P.: Revisiting the correlations between wet skid resistance and viscoelasticity of rubber composites via comparing carbon black and silica fillers. Polym. Test. 30(5), 557–562 (2011)

    Google Scholar 

  8. Wang, Y.X., Wu, Y.P., Li, W.J., Zhang, L.Q.: Influence of filler type on wet skid resistance of SSBR/BR composites: effects from roughness and micro-hardness of rubber surface. Appl. Surf. Sci. 257(6), 2058–2065 (2011)

    CAS  Google Scholar 

  9. Muller, H.K.: Fluid Sealing Technology: Principles and Applications. Routledge, London (1998)

    Google Scholar 

  10. Jin, Z.M., Dowson, D.: Elastohydrodynamic lubrication in biological systems. Proc. Inst. Mech. Eng. J 219(5), 367–380 (2005)

    Google Scholar 

  11. Sawyer, W.G., Dunn, A.C., Tichy, J.A., Uruen, J.M.: Lubrication regimes in contact lens wear during a blink. Tribol. Int. 63, 45–50 (2013)

    Google Scholar 

  12. Adams, M.J., Briscoe, B.J., Johnson, S.A.: Friction and lubrication of human skin. Tribol. Lett. 26(3), 239–253 (2007)

    CAS  Google Scholar 

  13. Malone, M.E., Appelqvist, I.A.M., Norton, I.T.: Oral behaviour of food hydrocolloids and emulsions. Part 1. Lubrication and deposition considerations. Food Hydrocoll. 17(6), 763–773 (2003)

    CAS  Google Scholar 

  14. Moyle, N., Wu, H., Khripin, C., Bremond, F., Hui, C.-Y., Jagota, A.: Enhancement of elastohydrodynamic friction by elastic hysteresis in a periodic structure. Soft Matter 16, 1627–1635 (2020)

    CAS  Google Scholar 

  15. Cameron, A.: Basic Lubrication Theory. E. Horwood, Chichester (1976)

    Google Scholar 

  16. Dowson, D., Higginson, G.R., Archard, J.F., Crook, A.W.: Elasto-Hydrodynamic Lubrication. Pergamon Press, Oxford (1977)

    Google Scholar 

  17. Persson, B.N.J.: Sliding Friction, Physical Principles and Applications. Springer-Verlag, Berlin (2000)

    Google Scholar 

  18. Martz, B.L.S.: Preliminary report of developments in interrupted surface finishes. Proc. Inst. Mech. Eng. 16(1), 1–9 (1947)

    Google Scholar 

  19. Okrent, E.H.: The effect of lubricant viscosity and composition on engine friction and bearing wear. ASLE Trans. 4(1), 97–108 (1961)

    CAS  Google Scholar 

  20. Tzeng, S.T., Saibel, E.: Surface roughness effect on slider bearing lubrication. ASLE Trans. 10(3), 334–348 (1967)

    Google Scholar 

  21. McGeehan, J.A.: A literature review of the effects of piston and ring friction and lubricating oil viscosity on fuel economy. SAE Trans. 87, 2619–2638 (1978)

    Google Scholar 

  22. Persson, B.N.J., Scaraggi, M.: On the transition from boundary lubrication to hydrodynamic lubrication in soft contacts. J. Phys. Condens. Matter 21(18), 185002 (2009)

    CAS  Google Scholar 

  23. Skotheim, J.M., Mahadevan, L.: Soft lubrication. Phys. Rev. Lett. (2004). https://doi.org/10.1103/PhysRevLett.92.245509

    Article  Google Scholar 

  24. Skotheim, J.M., Mahadevan, L.: Soft lubrication: the elastohydrodynamics of nonconforming and conforming contacts. Phys. Fluids 17(9), 1–23 (2005)

    Google Scholar 

  25. Scaraggi, M., Carbone, G., Persson, B.N.J., Dini, D.: Lubrication in soft rough contacts: a novel homogenized approach. Part I—theory. Soft Matter 7(21), 10395–10406 (2011)

    CAS  Google Scholar 

  26. Pandey, A., Karpitschka, S., Venner, C.H., Snoeijer, J.H.: Lubrication of soft viscoelastic solids. J. Fluid Mech. 799, 433–447 (2016)

    CAS  Google Scholar 

  27. De Vicente, J., Stokes, J.R., Spikes, H.A.: The frictional properties of Newtonian fluids in rolling—sliding soft-EHL contact. Tribol. Lett. 20(3–4), 273–286 (2005)

    Google Scholar 

  28. Bongaerts, J.H.H., Fourtouni, K., Stokes, J.R.: Soft-tribology: lubrication in a compliant PDMS-PDMS contact. Tribol. Int. 40(10–12), 1531–1542 (2007)

    CAS  Google Scholar 

  29. Scaraggi, M., Carbone, G., Dini, D.: Experimental evidence of micro-EHL lubrication in rough soft contacts. Tribol. Lett. 43(2), 169–174 (2011)

    CAS  Google Scholar 

  30. Kim, J.M., Wolf, F., Baier, S.K.: Effect of varying mixing ratio of PDMS on the consistency of the soft-contact Stribeck curve for glycerol solutions. Tribol. Int. 89, 46–53 (2015)

    CAS  Google Scholar 

  31. Stupkiewicz, S., Lengiewicz, J., Sadowski, P., Kucharski, S.: Finite deformation effects in soft elastohydrodynamic lubrication problems. Tribol. Int. 93, 511–522 (2016)

    Google Scholar 

  32. Selway, N., Chan, V., Stokes, J.R.: Influence of fluid viscosity and wetting on multiscale viscoelastic lubrication in soft tribological contacts. Soft Matter 13(8), 1702–1715 (2017)

    CAS  Google Scholar 

  33. Sadowski, P., Stupkiewicz, S.: Friction in lubricated soft-on-hard, hard-on-soft and soft-on-soft sliding contacts. Tribol. Int. 129, 246–256 (2019)

    Google Scholar 

  34. Tan, G., Wang, D., Liu, S., Wang, H., Zhang, S.: Frictional behaviors of rough soft contact on wet and dry pipeline surfaces: with application to deepwater pipelaying. Sci. China Technol. Sci. 56(12), 3024–3032 (2013)

    CAS  Google Scholar 

  35. Deleau, F., Mazuyer, D., Koenen, A.: Sliding friction at elastomer/glass contact: influence of the wetting conditions and instability analysis. Tribol. Int. 42(1), 149–159 (2009)

    CAS  Google Scholar 

  36. Pan, X.D.: Wet sliding friction of elastomer compounds on a rough surface under varied lubrication conditions. Wear 262(5–6), 707–717 (2007)

    CAS  Google Scholar 

  37. Pan, X.: Contribution of fine filler particles to energy dissipation during wet sliding of elastomer compounds on a rough surface. J. Phys. D 40(15), 4657–4667 (2007)

    CAS  Google Scholar 

  38. Gropper, D., Wang, L., Harvey, T.J.: hydrodynamic lubrication of textured surfaces: a review of modeling techniques and key findings. Tribol. Int. 94, 509–529 (2016)

    Google Scholar 

  39. Varenberg, M., Gorb, S.N.: Hexagonal surface micropattern for dry and wet friction. Adv. Mater. 21(4), 483–486 (2009)

    CAS  Google Scholar 

  40. Peng, Y., Serfass, C.M., Hill, C.N., Hsiao, L.C.: Bending of soft micropatterns in elastohydrodynamic lubrication tribology. Exp. Mech. 61(6), 969–979 (2021)

    CAS  Google Scholar 

  41. Peng, Y., Serfass, C.M., Kawazoe, A., Shao, Y., Gutierrez, K., Hill, C.N., Santos, V.J., Visell, Y., Hsiao, L.C.: Elastohydrodynamic friction of robotic and human fingers on soft micropatterned substrates. Nat. Mater. (2021). https://doi.org/10.1038/s41563-021-00990-9

    Article  Google Scholar 

  42. Moyle, N., He, Z., Wu, H., Hui, C.Y., Jagota, A.: Indentation versus rolling: dependence of adhesion on contact geometry for biomimetic structures. Langmuir 34(13), 3827–3837 (2018)

    CAS  Google Scholar 

  43. He, Z., Moyle, N.M., Hui, C.Y., Levrard, B., Jagota, A.: Adhesion and friction enhancement of film-terminated structures against rough surfaces. Tribol. Lett. 65(4), 161 (2017)

    Google Scholar 

  44. Mengüç, Y., Sitti, M.: Gecko-inspired polymer adhesives. Polym. Adhes. Frict. Lubr. (2013). https://doi.org/10.1002/9781118505175.ch9

    Article  Google Scholar 

  45. Murphy, M.P., Aksak, B., Sitti, M.: Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips. J. Adhes. Sci. Technol. 21(12), 1281–1296 (2007)

    CAS  Google Scholar 

  46. Reddy, S., Arzt, E., del Campo, A., Del Campo, A.: Bioinspired surfaces with switchable adhesion. Adv. Mater. 19(22), 3833–3837 (2007)

    CAS  Google Scholar 

  47. Liu, J., Hui, C.-Y., Jagota, A.: Effect of fibril arrangement on crack trapping in a film-terminated fibrillar interface. J. Polym. Sci. B 47(23), 2368–2384 (2009)

    CAS  Google Scholar 

  48. Jagota, A., Hui, C.Y.: Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces. Mater. Sci. Eng. R 72(12), 253–292 (2011)

    Google Scholar 

  49. Snoeijer, J.H., Eggers, J., Venner, C.H.: Similarity theory of lubricated Hertzian contacts. Phys. Fluids (2013). https://doi.org/10.1063/1.4826981

    Article  Google Scholar 

  50. Wu, H., Moyle, N., Jagota, A., Hui, C.-Y.: Lubricated steady sliding of a rigid sphere on a soft elastic substrate: hydrodynamic friction in the Hertz limit. Soft Matter 16, 2760–2773 (2020)

    CAS  Google Scholar 

  51. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Kelly Schultz for use of the rheometer to measure PDMS Young’s modulus.

Funding

We acknowledge support from the National Science Foundation through the Grant LEAP-HI: CMMI-1854572.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Jagota.

Ethics declarations

Conflict of interest

The authors have no financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 676 KB)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moyle, N., Dong, H., Wu, H. et al. Increased Sliding Friction of a Lubricated Soft Solid Using an Embedded Structure. Tribol Lett 70, 2 (2022). https://doi.org/10.1007/s11249-021-01540-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01540-9

Keywords