Skip to main content

High Wear Resistance and Mechanical Performance of NiAl Bronze Developed by Electron Beam Powder Bed Fusion


This work reports the additively manufactured NiAl bronze alloys via electron beam powder bed fusion (EB-PBF) that exhibit improved wear resistance without an increase of friction, exceeding those of conventional hot-rolled counterparts. High wear resistance is attributed to the formation of a Cu–O-rich transfer layer, and to exceptional mechanical strength induced by integrated effects including uniformly distributed precipitation, grain refinement, martensitic transformation around stacking faults, and a modulus mismatch between precipitates and the matrix. The simulation results indicate that the effect of the precipitate distribution on the internal stress field of the matrix is dependent on the external force direction. For the shear force, the uniformly distributed precipitates promote the overall stress concentration of the matrix, leading to its high work-hardening capability that plays a role in improving the wear resistance. This study reveals the potential of the EB-PBF technique to develop alloys with high wear resistance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Gao, L.L., Cheng, X.H.: Microstructure and dry sliding wear behavior of Cu–10%Al–4%Fe alloy produced by equal channel angular extrusion. Wear 265, 986–991 (2008)

    CAS  Article  Google Scholar 

  2. 2.

    Li, Z.-H., Cheng, X.-H.: Effects of Equal Channel Angular Extrusion (ECAE) process on the mechanical property and erosion resistance of Ti–5Al–5Mo–5V–3Cr alloy. Tribol. Lett. 62, 6 (2016)

    Article  Google Scholar 

  3. 3.

    Tang, C.H., Cheng, F.T., Man, H.C.: Effect of laser surface melting on the corrosion and cavitation erosion behaviors of a manganese–nickel–aluminium bronze. Mater. Sci. Eng. A 373, 195–203 (2004)

    Article  Google Scholar 

  4. 4.

    Azakli, Z., Gümrük, R.: Particle erosion performance of additive manufactured 316L stainless steel materials. Tribol. Lett. 69, 130 (2021)

    Article  Google Scholar 

  5. 5.

    Thapliyal, S., Dwivedi, D.K.: Study of the effect of friction stir processing of the sliding wear behavior of Cast NiAl Bronze: a statistical analysis. Tribol. Int. 97, 124–135 (2016)

    CAS  Article  Google Scholar 

  6. 6.

    Arab, M., Marashi, S.P.H.: Graphene Nanoplatelet (GNP)-incorporated AZ31 magnesium nanocomposite: microstructural, mechanical and tribological properties. Tribol. Lett. 66, 156 (2018)

    Article  Google Scholar 

  7. 7.

    Han, Y., Wang, L., Liu, K., Yan, W.: Numerical modeling of laser powder bed fusion of metallic glasses: prediction of crystallization. J. Micromech. Mol. Phys. 05, 2050013 (2021)

    Article  Google Scholar 

  8. 8.

    Yang, H., Wei, L., Lin, X.: A cellular automaton simulation of W-Ni alloy solidification in laser solid forming process. J. Micromech. Mol. Phys. 02, 1750016 (2018)

    Article  Google Scholar 

  9. 9.

    Herzog, D., Seyda, V., Wycisk, E., Emmelmann, C.: Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016)

    CAS  Article  Google Scholar 

  10. 10.

    Li, Y., Zhou, K., Shu, B.T., Chua, C.K., Leong, K.F.: Heat transfer and phase transition in the selective laser melting process. Int. J. Heat Mass Transf. 108, 2408–2416 (2017)

    Article  Google Scholar 

  11. 11.

    Liu, J., Stevens, E., Yang, Q., Chmielus, M., To, A.: An analytical model of the melt pool and single track in coaxial laser direct metal deposition (LDMD) additive manufacturing. J. Micromech. Mol. Phys. 02, 1750013 (2017)

    CAS  Article  Google Scholar 

  12. 12.

    Wu, H., Ren, J., Huang, Q., Zai, X., Liu, L., Chen, C., et al.: Effect of laser parameters on microstructure, metallurgical defects and property of AlSi10Mg printed by selective laser melting. J. Micromech. Mol. Phys. 02, 1750017 (2017)

    CAS  Article  Google Scholar 

  13. 13.

    Ai, L., Gao, X.L.: Micromechanical modeling of 3D printable interpenetrating phase composites with tailorable effective elastic properties including negative Poisson’s ratio. J. Micromech. Mol. Phys. 02, 1750015 (2017)

    CAS  Article  Google Scholar 

  14. 14.

    DiCecco, L.-A., Mehdi, M., Edrisy, A.: Dry-sliding wear mechanisms of shot-peened additive manufactured alpha titanium featuring TiB particles. Tribol. Lett. 69, 90 (2021)

    Article  Google Scholar 

  15. 15.

    Jadhav, S., Goossens, L., Kinds, Y., Hooreweder, B., Vanmeensel, K.: Laser-based powder bed fusion additive manufacturing of pure copper. Addit. Manuf. 42, 101990 (2021)

    CAS  Google Scholar 

  16. 16.

    Li, B., Zheng, H., Han, C., Zhou, K.: Nanotwins-containing microstructure and superior mechanical strength of a Cu-9Al-5Fe-5Ni alloy additively manufactured by laser metal deposition. Addit. Manuf. 39, 101825 (2021)

    CAS  Google Scholar 

  17. 17.

    Lassègue, P., Salvan, C., De Vito, E., Soulas, R., Herbin, M., Hemberg, A., et al.: Laser Powder Bed Fusion (L-PBF) of Cu and CuCrZr parts: influence of an absorptive Physical Vapor Deposition (PVD) coating on the printing process. Addit. Manuf. 39, 101888 (2021)

    Google Scholar 

  18. 18.

    Ramirez, D.A., Murr, L.E., Martinez, E., Hernandez, D.H., Martinez, J.L., Machado, B.I., et al.: Novel precipitate–microstructural architecture developed in the fabrication of solid copper components by additive manufacturing using electron beam melting. Acta Mater. 59, 4088–4099 (2011)

    CAS  Article  Google Scholar 

  19. 19.

    Popovich, A., Sufiiarov, V., Polozov, I., Borisov, E., Masaylo, D., Orlov, A.: Microstructure and mechanical properties of additive manufactured copper alloy. Mater. Lett. 179, 38–41 (2016)

    CAS  Article  Google Scholar 

  20. 20.

    Sciammarella, F.M., Gonser, M., Styrcula, M.: Laser Additive Manufacturing of Pure Copper. RAPID, pp. 1241–1248. Place (2013)

  21. 21.

    Liu, Y., Ye, Z., Wang, X., Liang, B., Zhang, Y.: Microstructure and mechanical behavior of Cu–9Al–4Ni-3.5Fe-0.5Mn alloy fabricated by laser melting deposition. Mater. Sci. Eng. A 826, 142006 (2021)

    CAS  Article  Google Scholar 

  22. 22.

    Alkelae, F., Sasaki, S.: Tribological and mechanical characterization of Nickel Aluminium Bronze (NAB) manufactured by Laser Powder-Bed Fusion (L-PBF). Tribology 15, 126–135 (2020)

    Google Scholar 

  23. 23.

    Zhang, P., Lu, W., Liu, X., Zhou, M., Zhai, W., Zhang, G., et al.: Torsional fretting wear behavior of CuNiAl against 42CrMo4 under flat on flat contact. Wear 380, 6–14 (2017)

    Article  Google Scholar 

  24. 24.

    Zhai, W., Lu, W., Zhang, P., Zhou, M., Liu, X., Zhou, L.: Microstructure, mechanical and tribological properties of nickel-aluminium bronze alloys developed via gas-atomization and spark plasma sintering. Mater. Sci. Eng. A 707, 325–336 (2017)

    CAS  Article  Google Scholar 

  25. 25.

    Lu, W., Zhai, W., Zhang, P., Zhou, M., Liu, X., Zhou, L.: Effect of different levels of free water in oil on the fretting wear of nickel-aluminum bronze based composites. Wear 390–391, 376–384 (2017)

    Article  Google Scholar 

  26. 26.

    Zhang, P., Liu, X., Lu, W., Zhai, W., Zhou, M., Wang, J.: Fretting wear behavior of CuNiAl against 42CrMo4 under different lubrication conditions. Tribol. Int. 117, 59–67 (2018)

    Article  Google Scholar 

  27. 27.

    Zhang, P., Lu, W., Liu, X., Zhai, W., Zhou, M., Jiang, X.: A comparative study on torsional fretting and torsional sliding wear of CuNiAl under different lubricated conditions. Tribol. Int. 117, 78–86 (2018)

    Article  Google Scholar 

  28. 28.

    Zhang, P., Lu, W., Liu, X., Zhai, W., Zhou, M., Zeng, W.: Torsional fretting and torsional sliding wear behaviors of CuNiAl against 42CrMo4 under dry condition. Tribol. Int. 118, 11–19 (2018)

    CAS  Article  Google Scholar 

  29. 29.

    Zhou, M., Lu, W., Liu, X., Zhai, W., Zhang, P., Zhang, G.: Fretting wear properties of plasma-sprayed Ti3SiC2 coatings with oxidative crack-healing feature. Tribol. Int. 118, 196–207 (2018)

    CAS  Article  Google Scholar 

  30. 30.

    Lu, W., Zhai, W., Wang, J., Liu, X., Zhou, L., Ibrahim, A.M.M., et al.: Additive manufacturing of isotropic-grained, high-strength and high-ductility copper alloys. Addit. Manuf. 38, 101751 (2021)

    CAS  Google Scholar 

  31. 31.

    Gourlay, C.M., Dahle, A.K.: Dilatant shear bands in solidifying metals. Nature 445, 70–73 (2007)

    CAS  Article  Google Scholar 

  32. 32.

    Martin, J.H., Yahata, B.D., Hundley, J.M., Mayer, J.A., Schaedler, T.A., Pollock, T.M.: 3D printing of high-strength aluminium alloys. Nature 549, 365 (2017)

    CAS  Article  Google Scholar 

  33. 33.

    Li, P., Li, S.X., Wang, Z.G., Zhang, Z.F.: Unified factor controlling the dislocation evolution of fatigued face-centered cubic crystals. Acta Mater. 129, 98–111 (2017)

    CAS  Article  Google Scholar 

  34. 34.

    Agnew, S.R., Horton, J.A., Yoo, M.H.: Transmission electron microscopy investigation of 〈 c + a 〉 dislocations in Mg and α -solid solution Mg-Li alloys. Metall. Mater. Trans. A. 33, 851–858 (2002)

    Article  Google Scholar 

  35. 35.

    Li, B., Yan, P.F., Sui, M.L., Ma, E.: Transmission electron microscopy study of stacking faults and their interaction with pyramidal dislocations in deformed Mg. Acta Mater. 58, 173–179 (2010)

    CAS  Article  Google Scholar 

  36. 36.

    Zhai, W., Bai, L., Zhou, R., Fan, X., Kang, G., Liu, Y., et al.: Recent progress on wear-resistant materials: designs, properties, and applications. Adv. Sci. 2003739 (2021)

  37. 37.

    Chen, X., Han, Z., Lu, K.: Enhancing wear resistance of Cu–Al alloy by controlling subsurface dynamic recrystallization. Scripta Mater. 101, 76–79 (2015)

    CAS  Article  Google Scholar 

  38. 38.

    Sander, J., Hufenbach, J., Giebeler, L., Bleckmann, M., Eckert, J., Kühn, U.: Microstructure, mechanical behavior, and wear properties of FeCrMoVC steel prepared by selective laser melting and casting. Scripta Mater. 126, 41–44 (2017)

    CAS  Article  Google Scholar 

  39. 39.

    Seol, J.B., Kim, J.G., Na, S.H., Park, C.G., Kim, H.S.: Deformation rate controls atomic-scale dynamic strain aging and phase transformation in high Mn TRIP steels. Acta Mater. 131, 187–196 (2017)

    CAS  Article  Google Scholar 

  40. 40.

    Karewar, S., Sietsma, J., Santofimia, M.J.: Effect of pre-existing defects in the parent fcc phase on atomistic mechanisms during the martensitic transformation in pure Fe: a molecular dynamics study. Acta Mater. 142, 71–81 (2018)

    CAS  Article  Google Scholar 

  41. 41.

    Fischer, A., Dudzinski, W., Gleising, B., Stemmer, P.: Analyzing mild- and ultra-mild sliding wear of metallic materials by transmission electron microscopy. In: Dienwiebel, M., De Barros Bouchet, M.-I. (eds.) Advanced Analytical Methods in Tribology, pp. 29–59. Springer, New York (2018)

    Chapter  Google Scholar 

Download references


This work was supported the National Natural Science Foundation of China (NSFC) (52175169, 51805183); and the Fundamental Research Funds for the Central Universities (2020kfyXJJS0).

Author information




WZ and WL conceived the concept and designed the methodology. WL lead the project. WL, WZ and JW fabricated the samples and conducted the experiments. WZ, AD, XJ, LP and JW analyzed the data. WZ wrote the manuscript. All co-authors contributed to the discussion and commented on the manuscript.

Corresponding author

Correspondence to Jian Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhai, W., Sun, A., Zeng, W. et al. High Wear Resistance and Mechanical Performance of NiAl Bronze Developed by Electron Beam Powder Bed Fusion. Tribol Lett 69, 158 (2021).

Download citation


  • Fretting
  • Metal-matrix composite
  • Additive manufacturing
  • Electron microscopy
  • Finite element modeling