Skip to main content

Molecular Dynamics Simulation of Sliding Friction Between Crystalline Cotton Fiber and Cr

Abstract

The effects of load and temperature on the friction between crystalline cotton cellulose and chromium in vacuum were investigated utilizing ReaxFF molecular dynamics. Simulation results indicate that a new chemical bond, Cr=O bond, is formed between the sliding friction interface. In the initial stage, the friction force is determined by the number of atoms in contact with the interface. Then, the friction force depends on the number of atoms of cellulose nested in the chromium matrix at the contact interface. It is positively correlated with load and temperature. Under low load, with the formation of the Cr=O bond, the surface structure of the chromium matrix is damaged. With the increase of load, more Cr=O bonds are formed between the contact interfaces, which leads to more profound damage to the surface structure of the chromium layer. This work systematically introduces the influence mechanism of load and temperature on the friction behavior of crystalline cotton cellulose with chromium, thus providing a new perspective on the study of frictional wear mechanism between cotton cellulose and metal.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Bogdanovic, G., Tiberg, F., Rutland, M.W.: Sliding friction between cellulose and silica surfaces. Langmuir 17, 5911–5916 (2001). https://doi.org/10.1021/la010330c

    CAS  Article  Google Scholar 

  2. 2.

    Nordgren, N., Eronen, P., Österberg, M., Laine, J., Rutland, M.W.: Mediation of the nanotribological properties of cellulose by chitosan adsorption. Biomacromol 10, 645–650 (2009). https://doi.org/10.1021/bm801467w

    CAS  Article  Google Scholar 

  3. 3.

    Xie, T., Yang, H.P., Hui, Y.: Numerical simulation of the process of friction and wear. Lubr. Eng. 38, 88–92 (2013)

    Google Scholar 

  4. 4.

    Li, L.R., Luo, L., Wang, B.F.: An overview on classical molecular dynamics simulation. Heat Treat. Technol. Equip. 33, 53–57 (2012). https://doi.org/10.3969/j.issn.1671-4776.2005.03.009

    Article  Google Scholar 

  5. 5.

    Liu, P., Han, X.L., Sun, D.L., Wang, Q.: Research progress in the application of molecular dynamics simulation in the frictional wear of materials. Mater. Sci. Technol. 25, 26–34 (2017). https://doi.org/10.11951/j.issn.1005-0299.20160422

    Article  Google Scholar 

  6. 6.

    Wen, Y.H., Zhu, R.Z., Wang, C.Y.: An overview on molecular dynamics simulation. Adv. Mech. 33, 65–73 (2003). https://doi.org/10.3321/j.issn:1000-0992.2003.01.008

    Article  Google Scholar 

  7. 7.

    Zhao, S., Li, J.F., Zhou, Y.H.: Molecular dynamics simulation and its application in the materials science. Mater. Rev. 25, 5–8 (2007). https://doi.org/10.3321/j.issn:1005-023X.2007.04.002

    CAS  Article  Google Scholar 

  8. 8.

    Neyertz, S., Pizzi, A., Merlin, A., Maigret, B., Brown, D., Deglise, X.: A new all-atom force field for crystalline cellulose I. J. Appl. Polym. Sci. 78, 1939–1946 (2000). https://doi.org/10.1002/1097-4628(20001209)78:11%3c1939::AID-APP130%3e3.0.CO;2-9

    CAS  Article  Google Scholar 

  9. 9.

    Wang, X.M., Chen, H., Chen, D.F.: Dynamics analysis and comparison of two types dumbbell molecular models. J. Qingdao Univ. (Natural Science Edition). 23, 36–40 (2010). https://doi.org/10.3969/j.issn.1006-1037.2010.01.009

    CAS  Article  Google Scholar 

  10. 10.

    Muthoka, R.M., Kim, H.C., Kim, J.W., Zhai, L.D., Panicker, P.S., Kim, J.: Steered pull simulation to determine nanomechanical properties of cellulose nanofiber. Materials. 13, 710 (2020). https://doi.org/10.3390/ma13030710

    CAS  Article  Google Scholar 

  11. 11.

    Saitoh, K.I., Ohno, H., Matsuo, S.: Structure and mechanical behavior of cellulose nanofiber and micro-fibrils by molecular dynamics simulation. Soft Nanosci. Lett. 3, 58–67 (2013). https://doi.org/10.4236/snl.2013.33011

    CAS  Article  Google Scholar 

  12. 12.

    Bochkareva, S.A., Panin, S.V., Lyukshin, B.A., Lyukshin, P.A., Aleksenko, V.O.: Simulation of frictional wear with account of temperature for polymer composites. Phys. Mesomech. 23, 147–159 (2020)

    Article  Google Scholar 

  13. 13.

    Yuan, S., Guo, X.G., Mao, Q., Guo, J., Guo, D.M.: Effects of pressure and velocity on the interface friction behavior of diamond utilizing ReaxFF simulations. Int. J. Mech. Sci. 191, 106096 (2020). https://doi.org/10.1016/j.ijmecsci.2020.106096

    Article  Google Scholar 

  14. 14.

    Weiss, M., Majchrzycki, Ł, Borkowska, E., Cichomski, M., Ptak, A.: Nanoscale dry friction: dependence on load and sliding velocity. Tribol. Int. 162, 107133 (2021). https://doi.org/10.1016/j.triboint.2021.107133

    CAS  Article  Google Scholar 

  15. 15.

    Rubin, M.B., Nadler, B.: An elastic–inelastic model for dry friction with a smooth transition. Int. J. Eng. Sci. 168, 103456 (2021). https://doi.org/10.1016/j.ijengsci.2021.103546

    Article  Google Scholar 

  16. 16.

    Tsuneyuki, S.: Computer simulation of inorganic structures with first-principle interatomic potentials. Acta Crystallogr A Found Crystallogr 49, 5 (1993). https://doi.org/10.1107/S0108767378099845

    Article  Google Scholar 

  17. 17.

    Van Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W.A.: ReaxFF: a reactive force field for hydrocarbon. J. Phys. Chem. A 105, 9396–9409 (2001). https://doi.org/10.1021/jp004368u

    CAS  Article  Google Scholar 

  18. 18.

    Leven, I., Hao, H.X., Tan, S.C., Guan, X.Y., Penrod, K.A., Akbarian, D., Evangelisti, B., Hossain, M.J., Islan, M.M., Koski, J.P., Moore, S., Aktulga, H.M., Van Duin, A.C.T., Head-Gordon, T.: Recent advances for improving the accuracy, transferability, and efficiency of reactive force fields. J. Chem. Theory Comput. 17, 3237–3251 (2021). https://doi.org/10.1021/acs.jctc.1c00118

    CAS  Article  Google Scholar 

  19. 19.

    Hahn, S.H., Liu, H.S., Kim, S.H., Van Duin, A.C.T.: Atomistic understanding of surface wear process of sodium silicate glass in dry versus humid environments. J. Am. Ceram. Soc. 103, 3060–3069 (2020). https://doi.org/10.1111/jace.17008

    CAS  Article  Google Scholar 

  20. 20.

    Wang, M., Duan, F.L., Mu, X.J.: Effect of surface silanol groups on friction and wear between amorphous silica surfaces. Langmuir 35, 5463–5470 (2019). https://doi.org/10.1021/acs.langmuir.8b04291

    CAS  Article  Google Scholar 

  21. 21.

    Yue, D.C., Ma, T.B., Hu, Y.Z., Yeon, J., Van Duin, A.C.T., Wang, H., Luo, J.B.: Tribochemical mechanism of amorphous silica asperities in aqueous environment: a reactive molecular dynamics study. Langmuir 31, 1429–1436 (2015). https://doi.org/10.1021/la5042663

    CAS  Article  Google Scholar 

  22. 22.

    Zhang, X.M., Tschopp, M.A., Shi, S.Q., Cao, J.: Molecular dynamics simulations of the glass transition temperature of amorphous cellulose. Appl. Mech. Mater. 214, 7–11 (2012)

    CAS  Article  Google Scholar 

  23. 23.

    Shin, Y.K., Kwak, H., Vasenkov, A.V., Sengupta, D., Van Duin, A.C.T.: Development of a ReaxFF reactive force field for Fe/Cr/O/S and application to oxidation of butane over a pyrite-covered Cr2O3 catalyst. ACS Catal. 5, 7226–7236 (2015). https://doi.org/10.1021/acscatal.5b01766

    CAS  Article  Google Scholar 

  24. 24.

    Van Duin, A.C.T., Strachan, A., Stewman, S., Zhang, Q.S., Xu, X., Goddard, W.A.: ReaxFFSiO reactive force field for silicon and silicon oxide systems. ACS Catal. 107, 3803–3811 (2003). https://doi.org/10.1021/jp0276303

    CAS  Article  Google Scholar 

  25. 25.

    Dai, L., Minn, M., Satyanarayana, N., Sinha, S.K., Tan, V.B.C.: Identifying the mechanisms of polymer friction through molecular dynamics simulation. Langmuir 27, 14861–14867 (2011). https://doi.org/10.1021/la202763r

    CAS  Article  Google Scholar 

  26. 26.

    Yew, Y.K., Minn, M., Sinha, S.K., Tan, V.B.C.: Molecular simulation of the frictional behavior of polymer-on-polymer sliding. Langmuir 27, 5891–5898 (2011). https://doi.org/10.1021/la201167r

    CAS  Article  Google Scholar 

  27. 27.

    Zhan, S.P., Xu, H.P., Duan, H.T., Pan, L., Jia, D., Tu, J.S., Liu, L., Li, J.: Molecular dynamics simulation of microscopic friction mechanisms of amorphous polyethylene. Soft Matter 15, 8827–8839 (2019). https://doi.org/10.1039/C9SM01533G

    CAS  Article  Google Scholar 

  28. 28.

    Zhou, M.Y., Fu, L., Jiang, F.Z., Jiang, B.Y., Drummer, D.: Atomistic investigation on the wetting behavior and interfacial joining of polymer-metal interface. Polymers 12(8), 1696 (2020). https://doi.org/10.3390/polym12081696

    CAS  Article  Google Scholar 

  29. 29.

    Howard, R.H., Meunier, M.: Molecular Modelling with Materials Studio®. CRC Press (2019)

  30. 30.

    Zhang, X.M., Tschopp, M.A., Horstemeyer, M.F., Shi, S.Q., Cao, J.: Mechanical properties of amorphous cellulose using molecular dynamics simulations with a reactive force field. Int. J. Model. Ident. Control 18, 211–217 (2013). https://doi.org/10.1504/IJMIC.2013.052814

    Article  Google Scholar 

  31. 31.

    Zhang, Y.: The role of chromium in metal materials. Mech. Eng. (1999). https://doi.org/10.3969/j.issn.1002-2333.1999.03.040

    Article  Google Scholar 

  32. 32.

    Wang, W.Z.: Hard chromium plating for common metals. Electroplat. Pollut. Control. (2006). https://doi.org/10.3969/j.issn.1000-4742.2006.04.013

    Article  Google Scholar 

  33. 33.

    Mazeau, K., Heux, L.: Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J. Phys. Chem. B 107, 2394–2403 (2003). https://doi.org/10.1021/jp0219395

    CAS  Article  Google Scholar 

  34. 34.

    Poma, A.B., Chwastyk, M., Cieplak, M.: Coarse-grained model of the native cellulose Iα and the transformation pathways to the Iβ allomorph. Cellulose 23, 1573–1591 (2016). https://doi.org/10.1007/s10570-016-0903-4

    CAS  Article  Google Scholar 

  35. 35.

    Nishiyama, Y., Langan, P., Chanzy, H.: Crystal structure and hydrogen-bonding system in cellulose I(alpha) from synchrotron X-ray neutron fiber diffraction. J. Am. Chem. Soc. 124, 9074–9082 (2002). https://doi.org/10.1021/ja037055w

    CAS  Article  Google Scholar 

  36. 36.

    Lee, C.M., Kubicki, J.D., Fan, B.X., Zhong, L.H., Jarvis, M.C., Kim, S.H.: Hydrogen-bonding network and OH stretch vibration of cellulose: comparison of computational modeling with polarized IR and SFG spectra. J. Phys. Chem. B 119, 15138–15149 (2015). https://doi.org/10.1021/acs.jpcb.5b08015

    CAS  Article  Google Scholar 

  37. 37.

    Sorieul, M., Dickson, A., Hill, S.J., Pearson, H.: Plant fibre: molecular structure and biomechanical properties, of a complex living material, influencing its deconstruction towards a biobased composite. Materials. 9, 618 (2016). https://doi.org/10.3390/ma9080618

    CAS  Article  Google Scholar 

  38. 38.

    Grazulis, S., Daskevic, A., Merkys, A., Chateigner, D., Lutterotti, L., Quiros, M., Serbryanaya, N.R., Moeck, P., Downs, R.T., Bail, A.L.: Crystallography open database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res. 40, D420–D427 (2012). https://doi.org/10.1093/nar/gkr900

    CAS  Article  Google Scholar 

  39. 39.

    Florian, M.P.: Coarse-Graining in polymer simulation: from the atomistic to the mesoscopic scale and back. ChemPhysChem 3, 754–769 (2002). https://doi.org/10.1002/1439-7641(20020916)3:9%3c754::AID-CPHC754%3e3.0.CO;2-U

    Article  Google Scholar 

  40. 40.

    Zhang, Y.Q., Luo, S.L., Zhang, H.: Dynamic analysis of spindles in picking process with intermittent excitations. Noise Vib. Control. 37(6), 41-45,157 (2017). https://doi.org/10.3969/j.issn.1006-1355.2017.06.008

    CAS  Article  Google Scholar 

  41. 41.

    Liu, L.C., Liu, Y., Zybin, S.V., Sun, H., Goddard, W.A.: ReaxFF-/g: Correction of the ReaxFF Reactive Force Field for London Dispersion, with Applications to the Equations of State for Energetic Materials. J. Phys. Chem. A 115, 11016–11022 (2011). https://doi.org/10.1021/jp201599t

    CAS  Article  Google Scholar 

  42. 42.

    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    CAS  Article  Google Scholar 

  43. 43.

    Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 2154–2162 (2010). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  44. 44.

    Zhang, Y.Q., Wang, W., Liao, J.A.: Wear failure analysis on spindle of cotton picker. Trans. Chin. Soc. Agric. Eng. 33, 45–50 (2017). https://doi.org/10.11975/j.issn.1002-6819.2017.18.006

    Article  Google Scholar 

Download references

Funding

This study was supported by the Xinjiang Production and Construction Corps Research Program (Nos. 2018AB007; 2021CB036).

Author information

Affiliations

Authors

Contributions

ZY designed the calculations and performed the writing—original draft and conceptualization; YQZ was responsible for the funding acquisition and methodology; KXJ and WJF performed writing—review & editing; HC was responsible for supervision. All authors participated in the discussions and manuscript preparation.

Corresponding author

Correspondence to Youqiang Zhang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6862 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Jiang, K., Fang, W. et al. Molecular Dynamics Simulation of Sliding Friction Between Crystalline Cotton Fiber and Cr. Tribol Lett 69, 153 (2021). https://doi.org/10.1007/s11249-021-01533-8

Download citation

Keywords

  • Cotton cellulose
  • Chromium
  • Modeling and simulation
  • Load and temperature
  • Frictional wear