Skip to main content

Comparison of Microscratch Responses of Metals Between Berkovich and Rockwell C Indenters Under Progressive Normal Force

Abstract

Microscratch test was conducted on sixteen metals by Berkovich and Rockwell C 120° diamond indenters to compare scratch responses of metals under progressive normal force linearly increasing from 5 mN to 30 N. Both penetration and residual depths obtained by Rockwell C indenter increase linearly with normal force, but the depths measured by Berkovich indenter increase nonlinearly. The asymptotic elastic recovery rate increases linearly with elastic modulus and yield stress. The asymptotic scratch hardness, lateral hardness and Knoop hardness increase linearly with yield stress. The asymptotic scratch hardness by Rockwell C indenter, the asymptotic lateral hardness by Berkovich indenter and Knoop hardness are the same and twice the asymptotic scratch hardness by Berkovich indenter.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Data Availability

The data and material are available from the corresponding author on request via email: mingliuUK@gmail.com or mingliu@fzu.edu.cn.

References

  1. 1.

    Xiao, J., Zhang, L., Zhou, K., Wang, X.: Microscratch behavior of copper–graphite composites. Tribol. Int. 57, 38–45 (2013)

    CAS  Google Scholar 

  2. 2.

    Liu, M., Wu, J., Gao, C.: Sliding of a diamond sphere on K9 glass under progressive load. J. Non-Cryst. Solids 526, 119711 (2019)

    CAS  Google Scholar 

  3. 3.

    Liu, M., Zheng, Q., Gao, C.: Sliding of a diamond sphere on fused silica under ramping load. Mater. Today Commun. 25, 101684 (2020)

    CAS  Google Scholar 

  4. 4.

    Liu, M., Li, S., Gao, C.: Fracture toughness measurement by micro-scratch tests with conical indenter. Tribology 39, 556–564 (2019)

    Google Scholar 

  5. 5.

    Liu, M.: Microscratch of copper by a Rockwell C diamond indenter under a constant load. Nanotechnol. Precis. Eng. 4, 033003 (2021)

    Google Scholar 

  6. 6.

    Briscoe, B.J., Pelillo, E., Sinha, S.K.: Scratch hardness and deformation maps for poiycarbonate and polyethyiene. Polym. Eng. Sci. 36, 2996–3005 (1996)

    Google Scholar 

  7. 7.

    Beegan, D., Chowdhury, S., Laugier, M.T.: Comparison between nanoindentation and scratch test hardness (scratch hardness) values of copper thin films on oxidised silicon substrates. Surf. Coat. Technol. 201, 5804–5808 (2007)

    CAS  Google Scholar 

  8. 8.

    Gao, C.H., Liu, M.: Effects of normal load on the coefficient of friction by microscratch test of copper with a spherical indenter. Tribol. Lett. 67, 1–12 (2018)

    Google Scholar 

  9. 9.

    Gosvami, N.N., Ma, J., Carpick, R.W.: An in situ method for simultaneous friction measurements and imaging of interfacial tribochemical film growth in lubricated contacts. Tribol. Lett. 66, 154 (2018)

    Google Scholar 

  10. 10.

    Wei, Y., Nixon, W.A., Shi, Z.: Evaluation of wear resistance of snow plow blade cutting edges using the scratch test method. J. Test. Eval. 26, 527–531 (1998)

    Google Scholar 

  11. 11.

    Rutherford, K.L., Hutchings, L.M.: Theory and application of a micro-scale abrasive wear test. J. Test. Eval. 25, 250–260 (1997)

    CAS  Google Scholar 

  12. 12.

    Yazdi, R., Ghasemi, H.M., Abedini, M., Wang, C., Neville, A.: Oxygen diffusion layer on Ti–6Al–4V alloy: scratch and dry wear resistance. Tribol. Lett. 67, 101 (2019)

    Google Scholar 

  13. 13.

    Campos-Silva, I., Contla-Pacheco, A.D., Ruiz-Rios, A., Martínez-Trinidad, J., Rodríguez-Castro, G., Meneses-Amador, A., et al.: Effects of scratch tests on the adhesive and cohesive properties of borided Inconel 718 superalloy. Surf. Coat. Technol. 349, 917–927 (2018)

    CAS  Google Scholar 

  14. 14.

    Miyake, S., Yamazaki, S.: Nanoscratch properties of extremely thin diamond-like carbon films. Wear 305, 69–77 (2013)

    CAS  Google Scholar 

  15. 15.

    Ollendorf, H., Schneider, D.: A comparative study of adhesion test methods for hard coatings. Surf. Coat. Technol. 113, 86–102 (1999)

    CAS  Google Scholar 

  16. 16.

    Liu, J., Jiang, H., Cheng, Q., Wang, C.: Investigation of nano-scale scratch and stick-slip behaviors of polycarbonate using atomic force microscopy. Tribol. Int. 125, 59–65 (2018)

    CAS  Google Scholar 

  17. 17.

    Liu, Z., Sun, J., Shen, W.: Study of plowing and friction at the surfaces of plastic deformed metals. Tribol. Int. 35, 511–522 (2002)

    CAS  Google Scholar 

  18. 18.

    Ghasemi, R., Johansson, J., Ståhl, J.E., Jarfors, A.E.W.: Load effect on scratch micro-mechanisms of solution strengthened compacted graphite irons. Tribol. Int. 133, 182–192 (2019)

    CAS  Google Scholar 

  19. 19.

    Gee, M.G.: Low load multiple scratch tests of ceramics and hard metals. Wear 250, 264–281 (2001)

    Google Scholar 

  20. 20.

    Axén, N., Kahlman, L., Hutchings, I.M.: Correlations between tangential force and damage mechanisms in the scratch testing of ceramics. Tribol. Int. 30, 467–474 (1997)

    Google Scholar 

  21. 21.

    Kanematsu, W.: Subsurface damage in scratch testing of silicon nitride. Wear 256, 100–107 (2004)

    CAS  Google Scholar 

  22. 22.

    Liu, M., Hou, D., Gao, C.: Study on fracture toughness of semiconductor material using Vickers and Berkovich indenters. Chin. J. Theor. Appl. Mech. 53, 413–423 (2021)

    Google Scholar 

  23. 23.

    Krupička, A., Johansson, M., Hult, A.: Use and interpretation of scratch tests on ductile polymer coatings. Prog. Org. Coat. 46, 32–48 (2003)

    Google Scholar 

  24. 24.

    van Breemen, L.C.A., Govaert, L.E., Meijer, H.E.H.: Scratching polycarbonate: a quantitative model. Wear 274–275, 238–247 (2012)

    Google Scholar 

  25. 25.

    Zhang, G., Zhang, C., Nardin, P., Li, W.Y., Liao, H., Coddet, C.: Effects of sliding velocity and applied load on the tribological mechanism of amorphous poly-ether–ether–ketone (PEEK). Tribol. Int. 41, 79–86 (2008)

    CAS  Google Scholar 

  26. 26.

    Geng, Y., Yan, Y., He, Y., Hu, Z.: Investigation on friction behavior and processing depth prediction of polymer in nanoscale using AFM probe-based nanoscratching method. Tribol. Int. 114, 33–41 (2017)

    CAS  Google Scholar 

  27. 27.

    Lin, L., Pei, X.Q., Bennewitz, R., Schlarb, A.K.: Friction and wear of PEEK in continuous sliding and unidirectional scratch tests. Tribol. Int. 122, 108–113 (2018)

    CAS  Google Scholar 

  28. 28.

    Wong, M., Lim, G.T., Moyse, A., Reddy, J.N., Sue, H.J.: A new test methodology for evaluating scratch resistance of polymers. Wear 256, 1214–1227 (2004)

    CAS  Google Scholar 

  29. 29.

    Bucaille, J.L., Gauthier, C., Felder, E., Schirrer, R.: The influence of strain hardening of polymers on the piling-up phenomenon in scratch tests: experiments and numerical modelling. Wear 260, 803–814 (2006)

    CAS  Google Scholar 

  30. 30.

    Giannoukos, K., Salonitis, K.: Study of the mechanism of friction on functionally active tribological polyvinyl chloride (PVC)—aggregate composite surfaces. Tribol. Int. 141, 105906 (2020)

    CAS  Google Scholar 

  31. 31.

    Luo, C., Xu, Y., Zeng, N., Ma, T., Wang, C., Liu, Y.: Synergy between dodecylbenzenesulfonic acid and isomeric alcohol polyoxyethylene ether for nano-scale scratch reduction in copper chemical mechanical polishing. Tribol. Int. 152, 106576 (2020)

    CAS  Google Scholar 

  32. 32.

    Li, S., Zhang, J., Liu, M., Wang, R., Wu, L.: Influence of polyethyleneimine functionalized graphene on tribological behavior of epoxy composite. Polym. Bull. (2020). https://doi.org/10.1007/s00289-020-03439-2

    Article  Google Scholar 

  33. 33.

    Qiang, H., Cheng, Y.Q., Ma, E., Jian, X.: Locating bulk metallic glasses with high fracture toughness: chemical effects and composition optimization. Acta Mater. 59, 202–215 (2011)

    Google Scholar 

  34. 34.

    Kasimuthumaniyan, S., Gosvami, N.N., Krishnan, N.M.A.: Towards understanding the scratchability in functional glasses. Ceram. Int. 47(15), 20821–20843 (2021)

    CAS  Google Scholar 

  35. 35.

    Choudhury, D., Niyonshuti, I.I., Chen, J., Goss, J.A., Zou, M.: Tribological performance of polydopamine + Ag nanoparticles/PTFE thin films. Tribol. Int. 144, 106097 (2020)

    CAS  Google Scholar 

  36. 36.

    Arsecularatne, J.A., Colusso, E., Della Gaspera, E., Martucci, A., Hoffman, M.J.: Nanomechanical and tribological characterization of silk and silk-titanate composite coatings. Tribol. Int. 146, 106195 (2020)

    CAS  Google Scholar 

  37. 37.

    Liu, M., Li, S., Gao, C.: Study of failure mechanism of TiN coatings by micro-scratch testing. Acta Metrol. Sin. 41, 696–703 (2020)

    Google Scholar 

  38. 38.

    Wu, J., Wu, G., Kou, X., Lu, Z., Zhang, G., Wu, Z.: Probing tribological behaviors of Cr-DLC in corrosion solution by tailoring sliding interface. Tribol. Lett. 68, 95 (2020)

    CAS  Google Scholar 

  39. 39.

    Youn, S.W., Kang, C.G.: A study of nanoscratch experiments of the silicon and borosilicate in air. Mater. Sci. Eng. A 384, 275–283 (2004)

    Google Scholar 

  40. 40.

    Lee, K., Marimuthu, K.P., Kim, C.L., Lee, H.: Scratch-tip-size effect and change of friction coefficient in nano/micro scratch tests using XFEM. Tribol. Int. 120, 398–410 (2018)

    CAS  Google Scholar 

  41. 41.

    Pondicherry, K., Rajaraman, D., Galle, T., Hertelé, S., Fauconnier, D., De Baets, P.: Optimization and validation of a load-controlled numerical model for single asperity scratch. Tribol. Lett. 68, 45 (2020)

    Google Scholar 

  42. 42.

    Wei, Q., Lü, J., Yang, Q., Li, X.: Multi-pass micro-scratching and tribological behaviors of an austenitic steel in media. Tribol. Int. 117, 112–118 (2018)

    CAS  Google Scholar 

  43. 43.

    Vega-Morón, R.C., Rodríguez-Castro, G.A., Jiménez-Tinoco, L.F., Meneses-Amador, A., Méndez-Méndez, J.V., Escobar-Hernández, J., et al.: Multipass scratch behavior of borided and nitrided H13 steel. J. Mater. Eng. Perform. 27, 3886–3899 (2018)

    Google Scholar 

  44. 44.

    Pereira, J.I., Tressia, G., Machado, P.C., Franco, L.A., Sinatora, A.: Scratch test of pearlitic steels: Influence of normal load and number of passes on the sub-superficial layer formation. Tribol. Int. 128, 337–348 (2018)

    CAS  Google Scholar 

  45. 45.

    Xu, N., Han, W., Wang, Y., Li, J., Shan, Z.: Nanoscratching of copper surface by CeO2. Acta Mater. 124, 343–350 (2017)

    CAS  Google Scholar 

  46. 46.

    Seriacopi, V., Mezghani, S., Crequy, S., Machado, I.F., El Mansori, M., Souza, R.M.: Study of angular cutting conditions using multiple scratch tests onto low carbon steel: an experimental-numerical approach. Wear 426–427, 128–136 (2019)

    Google Scholar 

  47. 47.

    Bandyopadhyay, P., Dey, A., Mandal, A.K., Dey, N., Mukhopadhyay, A.K.: New observations on scratch deformations of soda lime silica glass. J. Non-Cryst. Solids 358, 1897–1907 (2012)

    CAS  Google Scholar 

  48. 48.

    Gauthier, C., Schirrer, R.: Time and temperature dependence of the scratch properties of poly(methylmethacrylate) surfaces. J. Mater. Sci. 35, 2121–2130 (2000)

    CAS  Google Scholar 

  49. 49.

    Geng, Y., Yan, Y., Hu, Z., Zhao, X.: Investigation of the nanoscale elastic recovery of a polymer using an atomic force microscopy-based method. Meas. Sci. Technol. 27, 015001 (2016)

    Google Scholar 

  50. 50.

    Zhang, J., Jiang, H., Jiang, C., Cheng, Q., Kang, G.: In-situ observation of temperature rise during scratch testing of poly(methylmethacrylate) and polycarbonate. Tribol. Int. 95, 1–4 (2016)

    Google Scholar 

  51. 51.

    Magnol, R.V., Macedo, M.Q., de Macêdo, M.C.S., Scandian, C.: Tribological characterization of jaspilite by linear scratch test. Wear 426–427, 142–150 (2019)

    Google Scholar 

  52. 52.

    Kumar, A., Staedler, T., Jiang, X.: Effect of normal load and roughness on the nanoscale friction coefficient in the elastic and plastic contact regime. Beilstein J. Nanotechnol. 4, 66–71 (2013)

    Google Scholar 

  53. 53.

    Gao, C.H., Liu, M.: Effect of sample tilt on measurement of friction coefficient by constant-load scratch testing of copper with a spherical indenter. J. Test. Eval. 48(2), 970–989 (2020)

    Google Scholar 

  54. 54.

    Liu, M.: Influence of sample tilt and applied load on microscratch behavior of copper under a spherical diamond indenter. Tribol. Lett. 69, 88 (2021)

    Google Scholar 

  55. 55.

    Liu, M., Zhu, G., Dong, X., Liao, J., Gao, C.: Effects of Sample Tilt on Vickers Indentation Hardness. In: Yao, L., Zhong, S., Kukuta, H., Juang, J.G., Anpo, M. (eds.) Advanced Mechanical Science and Technology for the Industrial Revolution 40 FZU 2016, pp. 271–283. Springer, Singapore (2018)

    Google Scholar 

  56. 56.

    Zhang, S.L., Tsou, A.H., Li, J.C.M.: Friction and damage in the scratching of poly(n-butyl acrylate) films. J. Polym. Sci. Part B: Polym. Phys. 40, 585–592 (2002)

    CAS  Google Scholar 

  57. 57.

    Sinha, S.K., Lim, D.B.J.: Effects of normal load on single-pass scratching of polymer surfaces. Wear 260, 751–765 (2006)

    CAS  Google Scholar 

  58. 58.

    Maegawa, S., Itoigawa, F., Nakamura, T.: Effect of normal load on friction coefficient for sliding contact between rough rubber surface and rigid smooth plane. Tribol. Int. 92, 335–343 (2015)

    CAS  Google Scholar 

  59. 59.

    Liu, M., Huang, C., Gao, C.: Effect of sample tilt and normal load on micro-scratch test of copper with a spherical indenter. Tribology 41, 27–37 (2021)

    Google Scholar 

  60. 60.

    Lafaye, S., Troyon, M.: On the friction behaviour in nanoscratch testing. Wear 261, 905–913 (2006)

    CAS  Google Scholar 

  61. 61.

    Liu, M.: Power and code management in wireless networks. PhD Thesis, The Ohio State University (2005)

  62. 62.

    Kadykova, G.N., Surovaya, G.N.: Temperature coefficient of the elasticity modulus of niobium alloys. Met. Sci. Heat Treat. 10, 400–402 (1968)

    Google Scholar 

  63. 63.

    Li, C.S., Huang, D.B.: Mechanical Engineering Materials Handbook: Metal Materials. Electronic Industry Press, Beijing (2006)

    Google Scholar 

  64. 64.

    Kumar, N., Owolabi, G.M., Jayaganthan, R., Goel, S.: Correlation of fracture toughness with microstructural features for ultrafine-grained 6082 Al alloy. Fatigue Fract. Eng. Mater. Struct. 41, 1884–1899 (2018)

    CAS  Google Scholar 

  65. 65.

    Ershadul, A.M., Samson, H., Abdelmagid, S.H., Quy, B.N., Manoj, G.: Development and characterization of new AZ41 and AZ51 magnesium alloys. In: Magnesium Technology, pp. 553–558. Springer, Cham (2011)

  66. 66.

    Bočan, J., Maňák, J., Jäger, A.: Nanomechanical analysis of AZ31 magnesium alloy and pure magnesium correlated with crystallographic orientation. Mater. Sci. Eng. A 644, 121–128 (2015)

    Google Scholar 

  67. 67.

    Wu, G.H., Xiao, H., Zhou, H.Z., Wang, R.X.: Anisotropy of warm-temperature tensile properties of extruded AZ31 magnesium alloy. Chin. J. Nonferrous Met. 27, 57–63 (2017)

    Google Scholar 

  68. 68.

    Somekawa, H., Mukai, T.: Effect of texture on fracture toughness in extruded AZ31 magnesium alloy. Scripta Mater. 53, 541–545 (2005)

    CAS  Google Scholar 

  69. 69.

    Kakiuchi, T., Uematsu, Y., Teratani, T., Harada, Y.: Effect of film elastic modulus on fatigue behaviour of DLC-coated wrought magnesium alloy AZ61. Procedia Eng. 10, 1087–1090 (2011)

    CAS  Google Scholar 

  70. 70.

    Cao, F.H., Long, S.Y., Liao, H.M.: Effect of high strain rate on the mechanical behavior of extruded AZ61 magnesium alloy. Spec. Cast Non-Ferrous Alloys 29, 500–504 (2009)

    Google Scholar 

  71. 71.

    Daud, M.A.M., Mohd-Zaidi, O., Syarif-Junaidi, S.D., et al.: Determination of plane strain fracture toughness for AZ61 magnesium alloy. Universiti Malaysia Perlis, Perlis (2009)

  72. 72.

    Wang, L.M., Feng, Y., Chen, F.X., Wang, H.Y.: Elasto-plastic test of Q235 steel bending beam with cracking resistance. J. Iron. Steel Res. Int. 20, 57–66 (2013)

    Google Scholar 

  73. 73.

    Zhao, Z., Sun, G.: Measuring fracture toughness of Q235 steel using flexible method. J. Wuhan Univ. Technol. 26, 18–20 (2002)

    CAS  Google Scholar 

  74. 74.

    Kucher, V.N.: Refinement of parameters of the model for nonlocalized damage accumulation to describe deformation of the steel 20. Strength Mater. 42, 735–745 (2010)

    CAS  Google Scholar 

  75. 75.

    Xue, Y.D., Zhao, Y., He, Q.: Reason analysis and solution method for unqualified performance of 20 steel forging. Heavy Cast. Forgings 30–32 (2013)

  76. 76.

    Li, Z.: The fracture toughness and mechanicals of 20 steel under different conditions of low temperature and stress states. Eng. Fract. Mech. 51, 205–208 (1995)

    Google Scholar 

  77. 77.

    Shang, Q.Y., Gong, J.X. Experimental research on elastic-plastic mechanical properties of spheroidal graphite cast iron at high temperature. Hot Working Technology 19–20 (2000).

  78. 78.

    Huang, B., Gong, W.B., Gao, H.W.: High Si nodular iron and its application development. Mod. Cast. Iron 1, 29–32 (2018)

    Google Scholar 

  79. 79.

    Peng, Z.: Microstructure and mechanical properties of titanium nitride coatings for cemented carbide cutting tools by pulsed high energy density plasma. Chin. Sci. Bull. 48, 1316 (2003)

    CAS  Google Scholar 

  80. 80.

    Zhang, X., Cheng, H.M., Li, J.Y., Yang, T.X.: Study on microstructure and mechanical properties of T10 steel quenched by atomized water with nitrogen gas. Hot Work. Technol. 44, 219–222 (2015)

    Google Scholar 

  81. 81.

    Zhou, J.G., Jin, Z.H., Liu, D.Y., Tu, M.J.: Study on strength, ductility, toughness, and resistance of impact fatigue of cold forming steels. Machinery 10–14 (1986).

  82. 82.

    Luo, X.X., Yao, Z.J., Zhang, P.Z., Chen, Y.: Tribological behaviors of Fe-Al-Cr-Nb alloyed layer deposited on 45 steel via double glow plasma surface metallurgy technique. Trans. Nonferrous Met. Soc. China 25, 3694–3699 (2015)

    CAS  Google Scholar 

  83. 83.

    Jiang, Z.H., Wang, B.Y., Xiao, W.C.: Mechanical behaviors of 45 steel during compression in the low frequency vibration. J. Plasticity Eng. 24, 166–170 (2017)

    Google Scholar 

  84. 84.

    Sun, Y.F., Wang, J.: Research on hardness and fracture toughness of 45 steel before and after hydrogen sulfide corrosion. Adv. Eng. Res. 123, 1248–1254 (2017)

    Google Scholar 

  85. 85.

    X, F.: Microstructures and mechanical properties of high-carbon pearlitic steel after deformation. Found. Technol 35, 247–249 (2014)

  86. 86.

    Liu, Y., Liu, X.: Development of ultrafine-grained steel for high strength construction. Found. Technol. 38, 1844–1847 (2017)

    Google Scholar 

  87. 87.

    Morris, A.J., Williams, S.B., Reynolds, M.A.: The effect of processing on the fracture toughness of 8090 T8 sheet. Mater. Sci. Forum 242, 187–192 (1997)

    CAS  Google Scholar 

  88. 88.

    Liu, Y., Wang, L.J., Wang, D.P.: Nano mechanical properties of 40Cr surface layer after ultrasonic surface rolling processing. J. Tianjin Univ. 45, 656–661 (2012)

    CAS  Google Scholar 

  89. 89.

    Duan, Z.X., Ren, S.K., Xi, X.W., Yan, L.H.: Characteristics of magnetization reversal during stress magnetization of 40Cr steel. J. Iron Steel Res. 28, 77–80 (2016)

    Google Scholar 

  90. 90.

    Li, Z.: A new technology for determining fracture toughness and its confidence with single DCB specimen. Eng. Fract. Mech. 55, 133–137 (1996)

    Google Scholar 

  91. 91.

    Liu, F.Z.: Stress analysis of decarburized surface of spring steel 60Si2Mn. J. Lanzhou Univ. Technol. 32, 28–30 (2006)

    Google Scholar 

  92. 92.

    Ma, M.T., Wong, D., Wu, B.R.: Effect of high-temperature thermomechanical treatment (HTMT) on fracture characteristics of 60Si2Mn spring steel. Trans. Met. Heat Treat. 2, 1–18 (1981)

    CAS  Google Scholar 

  93. 93.

    Jiang, D., Zhong, S., Xiao, W., Liu, D., Wu, M., Liu, S.: Structural, mechanical, electronic, and thermodynamic properties of pure tungsten metal under different pressures: a first principles study. Int. J. Quantum Chem. 120, e26231 (2020)

    CAS  Google Scholar 

  94. 94.

    Mutoh, Y., Ichikawa, K., Nagata, K., Takeuchi, M.: Effect of rhenium addition on fracture toughness of tungsten at elevated temperatures. J. Mater. Sci. 30, 770–775 (1995)

    CAS  Google Scholar 

  95. 95.

    Farraro, R., Mclellan, R.B.: Temperature dependence of the Young’s modulus and shear modulus of pure nickel, platinum, and molybdenum. Metall. Mater. Trans. A 8A, 1563–1565 (1977)

    CAS  Google Scholar 

  96. 96.

    Jing, Q., Bi, Y., Wu, Q., Jing, F., Wang, Z., Xu, J., et al.: Yield strength of molybdenum at high pressures. Rev. Sci. Instrum. 78, 073906 (2007)

    Google Scholar 

  97. 97.

    Sturm, D., Heilmaier, M., Schneibel, J.H., Jéhanno, P., Skrotzki, B., Saage, H.: The influence of silicon on the strength and fracture toughness of molybdenum. Mater. Sci. Eng. A 463, 107–114 (2007)

    Google Scholar 

  98. 98.

    Liu, F.X., Yang, F.Q., Gao, Y.F., Jiang, W.H., Guan, Y.F., Rack, P.D., et al.: Micro-scratch study of a magnetron-sputtered Zr-based metallic-glass film. Surf. Coat. Technol. 203, 3480–3484 (2009)

    CAS  Google Scholar 

  99. 99.

    Zhang, D., Sun, Y., Gao, C.H., Liu, M.: Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter. Wear 445, 203158 (2020)

    Google Scholar 

  100. 100.

    Caro, J., Cuadrado, N., González, I., Casellas, D., Prado, J.M., Vilajoana, A., et al.: Microscratch resistance of ophthalmic coatings on organic lenses. Surf. Coat. Technol. 205, 5040–5052 (2011)

    CAS  Google Scholar 

  101. 101.

    Dong, C., Mo, J., Yuan, C., Bai, X., Tian, Y.: Vibration and noise behaviors during stick-slip friction. Tribol. Lett. 67, 103 (2019)

    Google Scholar 

  102. 102.

    Xue, H., Li, K., Wang, S., Zhao, K.: Hardness indentation size effect analysis of 316L austenitic stainless steels during cold working. China Mech. Eng. 30, 105–112 (2019)

    Google Scholar 

  103. 103.

    Liu, M., Proudhon, H.: Finite element analysis of contact deformation regimes of an elastic-power plastic hardening sinusoidal asperity. Mech. Mater. 103, 78–86 (2016)

    Google Scholar 

  104. 104.

    Liu, M., Yang, S.H., Gao, C.H.: Scratch behavior of polycarbonate by Rockwell C diamond indenter under progressive loading. Polym. Test. 90, 106643 (2020)

    CAS  Google Scholar 

  105. 105.

    Ni, W., Cheng, Y.T., Lukitsch, M.: Effects of the ratio of hardness to Young’s modulus on the friction and wear behavior of bilayer coatings. Appl. Phys. Lett. 85, 4028–4030 (2004)

    CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (Grant No. 51705082), Engineering Research Center for CAD/CAM of Fujian Provincial Colleges and Universities (Grant No. K201705), Development Center of Scientific and Educational Park of Fuzhou University in the city of Jinjiang (Grant No. 2019-JJFDKY-11), Fujian Provincial Minjiang Scholar Program (Internal Grant No. 0020-510759), and Fuzhou University Testing Fund of Precious Apparatus (Grant No. 2020T017).

Author information

Affiliations

Authors

Contributions

The first and corresponding author M.L. carried out the experiment, and supervised the project. The second author F.Y. wrote the draft, and contributed to the interpretation of experimental results. Both authors discussed the results, and contributed to the final manuscript.

Corresponding author

Correspondence to Ming Liu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Yan, F. Comparison of Microscratch Responses of Metals Between Berkovich and Rockwell C Indenters Under Progressive Normal Force. Tribol Lett 69, 157 (2021). https://doi.org/10.1007/s11249-021-01530-x

Download citation

Keywords

  • Microscratch responses
  • Berkovich indenter
  • Rockwell C indenter
  • Progressive normal force