Skip to main content

Gel-Forming Mucin Improves Lubricity Across Model Gemini Epithelial Cell Interfaces

Abstract

The glycocalyx is a glycosylated protein network gel that protects the underlying epithelial cells. Although the glycocalyx is thought to be lubricious, in Gemini contacts with epithelial cells the glycocalyx is found to have high friction (µ ~ 0.20). The model of the tear film is that of a delicate hierarchical multiscale assembly of mucins that form a network aqueous gel interface between the glycocalyces of the conjunctival and corneal epithelial layers to provide lubricity and gentle shearing. The integrity of this aqueous gel is maintained through mucin entanglement, and dynamic flickering bonds of disulfide bridges, Ca2+-mediated links, and hydrogen bonding. The tear film has a unique set of rheological properties and behaviors, from a heterogeneous yield stress gel-like fluid at low shear stress to a low-viscosity fluid at high shear rate. In this manuscript, we have demonstrated that the gel-forming mucins are critical to lubricity. A Gemini model of corneal epithelial cells (self-mated and matched) with intact membrane-bound mucins and glycocalyces (including MUC1, MUC4, and MUC16) was evaluated in the presence and absence of a purified gel-forming purified secretory mucin, MUC2. These experiments were performed under physiological contact pressures of ~ 600 Pa for 300 cycles of reciprocated sliding at 1 mm/s on a micro-biotribometer. With the addition of the MUC2 (5 wt.%), friction reductions from µ ~ 0.20 to µ ~ 0.08 were observed. In addition to the high friction seen in the glycocalyx, Gemini contacts with membrane-bound mucins and glycocalyces alone showed stick–slip events during sliding and large areas of cell damage after 300 cycles. Micro-rheology experiments using magnetic tweezers showed a yield stress for a MUC2 solution that is below the critical thresholds known to produce proinflammatory cytokines (< 40 Pa) and apoptosis (< 100 Pa). These secreted gel-forming mucins, such as MUC2, are, therefore, important for lubricity in Gemini epithelial interfaces.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Linden, S.K., Sutton, P., Karlsson, N.G., Korolik, V., McGuckin, M.A.: Mucins in the mucosal barrier to infection. Mucosal Immunol. 1, 183–197 (2008). https://doi.org/10.1038/mi.2008.5

    CAS  Article  Google Scholar 

  2. 2.

    Kim, Y.S., Ho, S.B.: Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr. Gastroenterol. Rep. 12, 319–330 (2010). https://doi.org/10.1007/s11894-010-0131-2

    Article  Google Scholar 

  3. 3.

    Baudouin, C., Rolando, M., Benitez Del Castillo, J.M., Messmer, E.M., Figueiredo, F.C., Irkec, M., Van Setten, G., Labetoulle, M.: Reconsidering the central role of mucins in dry eye and ocular surface diseases. Prog. Retin. Eye Res. 71, 68–87 (2019). https://doi.org/10.1016/j.preteyeres.2018.11.007

    CAS  Article  Google Scholar 

  4. 4.

    Wagner, C.E., Wheeler, K.M., Ribbeck, K.: Mucins and their role in shaping the functions of mucus barriers. Annu. Rev. Cell Dev. Biol. 34, 189–215 (2018). https://doi.org/10.1146/annurev-cellbio-100617-062818

    CAS  Article  Google Scholar 

  5. 5.

    Hato, T., Dagher, P.C.: How the innate immune system senses trouble and causes trouble. Clin. J. Am. Soc. Nephrol. 10, 1459–1469 (2015). https://doi.org/10.2215/CJN.04680514

    CAS  Article  Google Scholar 

  6. 6.

    Antoni, L., Nuding, S., Weller, D., Gersemann, M., Ott, G., Wehkamp, J., Stange, E.F.: Human colonic mucus is a reservoir for antimicrobial peptides. J. Crohn’s Colitis. 7, e652–e664 (2013). https://doi.org/10.1016/j.crohns.2013.05.006

    Article  Google Scholar 

  7. 7.

    Möckl, L.: The emerging role of the mammalian glycocalyx in functional membrane organization and immune system regulation. Front. Cell Dev. Biol. (2020). https://doi.org/10.3389/fcell.2020.00253

    Article  Google Scholar 

  8. 8.

    van Putten, J.P.M., Strijbis, K.: Transmembrane mucins: signaling receptors at the intersection of inflammation and cancer. J. Innate Immun. 9, 281–299 (2017). https://doi.org/10.1159/000453594

    CAS  Article  Google Scholar 

  9. 9.

    Hodges, R.R.: Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins. Exp. Eye Res. 117, 62–78 (2013). https://doi.org/10.1016/j.exer.2013.07.027

    CAS  Article  Google Scholar 

  10. 10.

    Meldrum, O.W., Yakubov, G.E., Bonilla, M.R., Deshmukh, O., McGuckin, M.A., Gidley, M.J.: Mucin gel assembly is controlled by a collective action of non-mucin proteins, disulfide bridges, Ca2+-mediated links, and hydrogen bonding. Sci. Rep. 8, 5802 (2018). https://doi.org/10.1038/s41598-018-24223-3

    CAS  Article  Google Scholar 

  11. 11.

    Lai, S.K., Wang, Y.-Y., Wirtz, D., Hanes, J.: Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 61, 86–100 (2009). https://doi.org/10.1016/j.addr.2008.09.012

    CAS  Article  Google Scholar 

  12. 12.

    Perera, M.M., Ayres, N.: Dynamic covalent bonds in self-healing, shape memory, and controllable stiffness hydrogels. Polym. Chem. 11, 1410–1423 (2020). https://doi.org/10.1039/C9PY01694E

    CAS  Article  Google Scholar 

  13. 13.

    Tiffany, J.M.: The viscosity of human tears. Int. Ophthalmol. 15, 371–376 (1991). https://doi.org/10.1007/BF00137947

    CAS  Article  Google Scholar 

  14. 14.

    Lemp, M.A.: Advances in understanding and managing dry eye disease. Am. J. Ophthalmol. 146, 350-356.e1 (2008). https://doi.org/10.1016/j.ajo.2008.05.016

    Article  Google Scholar 

  15. 15.

    Pflugfelder, S.C., de Paiva, C.S.: The pathophysiology of dry eye disease. Ophthalmology 124, S4–S13 (2017). https://doi.org/10.1016/j.ophtha.2017.07.010

    Article  Google Scholar 

  16. 16.

    Hart, S.M., McGhee, E.O., Urueña, J.M., Levings, P.P., Eikenberry, S.S., Schaller, M.A., Pitenis, A.A., Sawyer, W.G.: Surface gel layers reduce shear stress and damage of corneal epithelial cells. Tribol. Lett. 68, 106 (2020). https://doi.org/10.1007/s11249-020-01344-3

    CAS  Article  Google Scholar 

  17. 17.

    Pitenis, A.A., Sawyer, W.G.: Lubricity of high water content aqueous gels. Tribol. Lett. 66, 113 (2018). https://doi.org/10.1007/s11249-018-1063-5

    CAS  Article  Google Scholar 

  18. 18.

    Hill, D.B., Button, B.: Establishment of respiratory air-liquid interface cultures and their use in studying mucin production, secretion, and function. In: McGuckin, M.A., Thornton, D.J. (eds.) Mucins: Methods and Protocols, pp. 245–258. Humana Press, Totowa (2012)

    Chapter  Google Scholar 

  19. 19.

    Leonard, B.C., Yañez-Soto, B., Raghunathan, V.K., Abbott, N.L., Murphy, C.J.: Species variation and spatial differences in mucin expression from corneal epithelial cells. Exp. Eye Res. 152, 43–48 (2016). https://doi.org/10.1016/j.exer.2016.09.001

    CAS  Article  Google Scholar 

  20. 20.

    Yáñez-Soto, B., Leonard, B.C., Raghunathan, V.K., Abbott, N.L., Murphy, C.J.: Effect of stratification on surface properties of corneal epithelial cells. Invest. Ophthalmol. Vis. Sci. 56, 1–3 (2015). https://doi.org/10.1167/iovs.15-17468

    CAS  Article  Google Scholar 

  21. 21.

    Hormel, T.T., Bhattacharjee, T., Pitenis, A.A., Urueña, J.M., Sawyer, W.G., Angelini, T.E.: A confocal fluorescence microscopy method for measuring mucous layer growth on living corneal epithelia. Biotribology 11, 73–76 (2017). https://doi.org/10.1016/j.biotri.2017.04.004

    Article  Google Scholar 

  22. 22.

    Urueña, J.M., Hart, S.M., Hood, D.L., McGhee, E.O., Niemi, S.R., Schulze, K.D., Levings, P.P., Sawyer, W.G., Pitenis, A.A.: Considerations for biotribometers: cells, gels, and tissues. Tribol. Lett. 66, 141 (2018). https://doi.org/10.1007/s11249-018-1094-y

    CAS  Article  Google Scholar 

  23. 23.

    Rich, J.P., Lammerding, J., McKinley, G.H., Doyle, P.S.: Nonlinear microrheology of an aging, yield stress fluid using magnetic tweezers. Soft Matter 7, 9933 (2011). https://doi.org/10.1039/c1sm05843f

    CAS  Article  Google Scholar 

  24. 24.

    Pitenis, A.A., Urueña, J.M., Hart, S.M., O’Bryan, C.S., Marshall, S.L., Levings, P.P., Angelini, T.E., Sawyer, W.G.: Friction-induced inflammation. Tribol. Lett. 66, 81 (2018). https://doi.org/10.1007/s11249-018-1029-7

    Article  Google Scholar 

  25. 25.

    Hart, S.M., Degen, G.D., Urueña, J.M., Levings, P.P., Sawyer, W.G., Pitenis, A.A.: Friction-induced apoptosis. Tribol. Lett. 67, 82 (2019). https://doi.org/10.1007/s11249-019-1197-0

    Article  Google Scholar 

  26. 26.

    Marshall, S.L., Schulze, K.D., Hart, S.M., Urueña, J.M., McGhee, E.O., Bennett, A.I., Pitenis, A.A., O’Bryan, C.S., Angelini, T.E., Sawyer, W.G.: Spherically capped membrane probes for low contact pressure tribology. Biotribology. 11, 69–72 (2017). https://doi.org/10.1016/j.biotri.2017.03.008

    Article  Google Scholar 

  27. 27.

    Urueña, J.M., Pitenis, A.A., Nixon, R.M., Schulze, K.D., Angelini, T.E., Sawyer, W.G.: Mesh size control of polymer fluctuation lubrication in gemini hydrogels. Biotribology. 1–2, 24–29 (2015). https://doi.org/10.1016/j.biotri.2015.03.001

    Article  Google Scholar 

  28. 28.

    Pitenis, A.A., Urueña, J.M., Schulze, K.D., Nixon, R.M., Dunn, A.C., Krick, B.A., Sawyer, W.G., Angelini, T.E.: Polymer fluctuation lubrication in hydrogel gemini interfaces. Soft Matter 10, 8955–8962 (2014). https://doi.org/10.1039/C4SM01728E

    CAS  Article  Google Scholar 

  29. 29.

    Simič, R., Spencer, N.D.: Controlling the friction of gels by regulating interfacial oxygen during polymerization. Tribol. Lett. 69, 86 (2021). https://doi.org/10.1007/s11249-021-01459-1

    CAS  Article  Google Scholar 

  30. 30.

    Wang, Y.-L., Pelham, R.J.: [39] Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol. 298, 489–496 (1998)

    CAS  Article  Google Scholar 

  31. 31.

    Pitenis, A.A., Urueña, J.M., Hormel, T.T., Bhattacharjee, T., Niemi, S.R., Marshall, S.L., Hart, S.M., Schulze, K.D., Angelini, T.E., Sawyer, W.G.: Corneal cell friction: survival, lubricity, tear films, and mucin production over extended duration in vitro studies. Biotribology 11, 77–83 (2017). https://doi.org/10.1016/j.biotri.2017.04.003

    Article  Google Scholar 

  32. 32.

    Schömig, V.J., Käsdorf, B.T., Scholz, C., Bidmon, K., Lieleg, O., Berensmeier, S.: An optimized purification process for porcine gastric mucin with preservation of its native functional properties. RSC Adv. 6, 44932–44943 (2016). https://doi.org/10.1039/C6RA07424C

    CAS  Article  Google Scholar 

  33. 33.

    Crocker, J.C., Grier, D.G.: Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996). https://doi.org/10.1006/jcis.1996.0217

    CAS  Article  Google Scholar 

  34. 34.

    Segur, J.B., Oberstar, H.E.: Viscosity of glycerol and its aqueous solutions. Ind. Eng. Chem. 43, 2117–2120 (1951). https://doi.org/10.1021/ie50501a040

    CAS  Article  Google Scholar 

  35. 35.

    Müser, M.H.: Nature of mechanical instabilities and their effect on kinetic friction. Phys. Rev. Lett. 89, 224301 (2002). https://doi.org/10.1103/PhysRevLett.89.224301

    CAS  Article  Google Scholar 

  36. 36.

    Davis, S.S.: Rheological examination of sputum and saliva and the effect of drugs. In: Gabelnick, H.L., Litt, M. (eds.) Rheology of Biological Systems, pp. 157–194. Charles C. Thomas, Springfield (1973)

    Google Scholar 

  37. 37.

    Bron, A.J., Yokoi, N., Gaffney, E.A., Tiffany, J.M.: A solute gradient in the tear meniscus. I. A hypothesis to explain Marx’s line. Ocul. Surf. 9, 70–91 (2011). https://doi.org/10.1016/S1542-0124(11)70014-3

    Article  Google Scholar 

  38. 38.

    Bron, A.J., Yokoi, N., Gaffney, E.A., Tiffany, J.M.: A solute gradient in the tear meniscus. II. Implications for lid margin disease, including meibomian gland dysfunction. Ocul. Surf. 9, 92–97 (2011). https://doi.org/10.1016/S1542-0124(11)70015-5

    Article  Google Scholar 

  39. 39.

    Willcox, M.D.P., Argüeso, P., Georgiev, G.A., Holopainen, J.M., Laurie, G.W., Millar, T.J., Papas, E.B., Rolland, J.P., Schmidt, T.A., Stahl, U., Suarez, T., Subbaraman, L.N., Uçakhan, O.Ö., Jones, L.: TFOS DEWS II tear film report. Ocul. Surf. 15, 366–403 (2017). https://doi.org/10.1016/j.jtos.2017.03.006

    Article  Google Scholar 

  40. 40.

    Liu, C., Madl, A.C., Cirera-Salinas, D., Kress, W., Straube, F., Myung, D., Fuller, G.G.: Mucin-like glycoproteins modulate interfacial properties of a mimetic ocular epithelial surface. Adv. Sci. (2021). https://doi.org/10.1002/advs.202100841

    Article  Google Scholar 

Download references

Funding

The research leading to these results received funding from Alcon Laboratories. Author DTN is supported by a National Science Foundation Graduate Research Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to W. G. Sawyer.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pedro, D.I., Nguyen, D.T., Rosa, J.G. et al. Gel-Forming Mucin Improves Lubricity Across Model Gemini Epithelial Cell Interfaces. Tribol Lett 69, 155 (2021). https://doi.org/10.1007/s11249-021-01529-4

Download citation

Keywords

  • Contact lens
  • Cell
  • Hydrogel
  • Mucin
  • Glycocalyx