Skip to main content

Effect of Carbon Configuration on Mechanical, Friction and Wear Behavior of Nitrogen-Doped Diamond-Like Carbon Films for Magnetic Storage Applications

Abstract

A high temperature mechanical and tribological study was performed to investigate the dependence of friction, wear and mechanical properties of ultra-thin nitrogen-doped diamond-like carbon (NDLC) films on their sp2/sp3 carbon configurations. Two NDLC films with the same thickness of 3 nm, almost the same nitrogen content, and different sp2/sp3 carbon ratios of 53% and 49% were deposited on FeCo/glass substrates. Heating to 300 °C led to partial reduction in sp3 carbon content of NDLCs, ending up with a softer layer. NDLC with 49% sp2/sp3 carbon ratio showed better mechanical properties at 300 °C and 25 °C before and after heat treatments, indicating that the lower the sp2/sp3 carbon ratio, the better the mechanical properties. The same NDLC also showed lower coefficient of friction because of lower sp2 carbon content. Wear tests revealed that NDLC with 49% sp2/sp3 carbon ratio also had better wear resistance at 300 °C because of improved mechanical properties. However, both NDLCs were not delaminated during wear tests at 300 °C and the average wear depths were less than 1 nm, which also indicated robustness and durability of the NDLC films.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng. R Rep. 37, 129–281 (2002). https://doi.org/10.1016/S0927-796X(02)00005-0

    Article  Google Scholar 

  2. 2.

    Schiffmann, K.I., Hieke, A.: Analysis of microwear experiments on thin DLC coatings: friction, wear and plastic deformation. Wear 254, 565–572 (2003). https://doi.org/10.1016/S0043-1648(03)00188-1

    CAS  Article  Google Scholar 

  3. 3.

    Erdemir, A., Donnet, C.: Tribology of diamond-like carbon films: recent progress and future prospects. J. Phys. D. Appl. Phys. 39, R311–R327 (2006). https://doi.org/10.1088/0022-3727/39/18/R01

    CAS  Article  Google Scholar 

  4. 4.

    Robertson, J.: Requirements of ultrathin carbon coatings for magnetic storage technology. Tribol. Int. 36, 405–415 (2003). https://doi.org/10.1016/S0301-679X(02)00216-5

    CAS  Article  Google Scholar 

  5. 5.

    Xiong, S., Smith, R., Schreck, E., Dai, Q.: Experimental study of material pick up on heat-assisted magnetic recording (HAMR) heads. Tribol. Lett. 69, 77 (2021). https://doi.org/10.1007/s11249-021-01455-5

    CAS  Article  Google Scholar 

  6. 6.

    Zhang, Y., Tang, H., Polycarpou, A.A.: High temperature mechanics, friction, wear and adhesion of heat-assisted magnetic recording. Tribol. Lett. 68, 109 (2020). https://doi.org/10.1007/s11249-020-01348-z

    CAS  Article  Google Scholar 

  7. 7.

    Kiely, J.D., Jones, P.M., Wang, H., Yang, R., Scholz, W., Benakli, M., Brand, J.L., Gangopadhyay, S.: Media roughness and head-media spacing in heat-assisted magnetic recording. IEEE Trans. Magn. 50, 132–136 (2014). https://doi.org/10.1109/TMAG.2013.2291684

    Article  Google Scholar 

  8. 8.

    Mangolini, F., Krick, B.A., Jacobs, T.D.B., Khanal, S.R., Streller, F., McClimon, J.B., Hilbert, J., Prasad, S.V., Scharf, T.W., Ohlhausen, J.A., Lukes, J.R., Sawyer, W.G., Carpick, R.W.: Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions. Carbon 130, 127–136 (2018). https://doi.org/10.1016/j.carbon.2017.12.096

    CAS  Article  Google Scholar 

  9. 9.

    Kalin, M., Vižintin, J., Barriga, J., Vercammen, K., van Acker, K., Arnšek, A.: The effect of doping elements and oil additives on the tribological performance of boundary-lubricated DLC/DLC contacts. Tribol. Lett. 17, 679–688 (2004). https://doi.org/10.1007/s11249-004-8073-1

    Article  Google Scholar 

  10. 10.

    Mangolini, F., McClimon, J.B., Segersten, J., Hilbert, J., Heaney, P., Lukes, J.R., Carpick, R.W.: Silicon oxide-rich diamond-like carbon: a conformal, ultrasmooth thin film material with high thermo-oxidative stability. Adv. Mater. Interfaces 6, 1801416 (2019). https://doi.org/10.1002/admi.201801416

    CAS  Article  Google Scholar 

  11. 11.

    Zeng, C., Chen, Q., Xu, M., Deng, S., Luo, Y., Wu, T.: Enhancement of mechanical, tribological and morphological properties of nitrogenated diamond-like carbon films by gradient nitrogen doping. Diam. Relat. Mater. 76, 132–140 (2017). https://doi.org/10.1016/j.diamond.2017.05.004

    CAS  Article  Google Scholar 

  12. 12.

    Yan, X., Xu, T., Chen, G., Yang, S., Liu, H.: Study of structure, tribological properties and growth mechanism of DLC and nitrogen-doped DLC films deposited by electrochemical technique. Appl. Surf. Sci. 236, 328–335 (2004). https://doi.org/10.1016/j.apsusc.2004.05.005

    CAS  Article  Google Scholar 

  13. 13.

    Wei, B., Zhang, B., Johnson, K.E.: Nitrogen-induced modifications in microstructure and wear durability of ultrathin amorphous-carbon films. J. Appl. Phys. 83, 2491–2499 (1998). https://doi.org/10.1063/1.367009

    CAS  Article  Google Scholar 

  14. 14.

    Khurshudov, A., Kato, K., Sawada, D.: Tribological and mechanical properties of carbon nitride thin coating prepared by ion-beam-assisted deposition. Tribol. Lett. (1996). https://doi.org/10.1007/BF00182544

    Article  Google Scholar 

  15. 15.

    Bootkul, D., Supsermpol, B., Saenphinit, N., Aramwit, C., Intarasiri, S.: Nitrogen doping for adhesion improvement of DLC film deposited on Si substrate by filtered cathodic vacuum arc (FCVA) technique. Appl. Surf. Sci. 310, 284–292 (2014)

    CAS  Article  Google Scholar 

  16. 16.

    Ferrari, A.C., Rodil, S.E., Robertson, J.: Interpretation of infrared and Raman spectra of amorphous carbon nitrides. Phys. Rev. B 67, 155306 (2003). https://doi.org/10.1103/PhysRevB.67.155306

    CAS  Article  Google Scholar 

  17. 17.

    Kleinsorge, B., Ferrari, A.C., Robertson, J., Milne, W.I.: Influence of nitrogen and temperature on the deposition of tetrahedrally bonded amorphous carbon. J. Appl. Phys. 88, 1149–1157 (2000). https://doi.org/10.1063/1.373790

    CAS  Article  Google Scholar 

  18. 18.

    Dekempeneer, E.H.A., Meneve, J., Smeets, J., Kuypers, S., Eersels, L., Jacobs, R.: Structural, mechanical and tribological properties of plasma-assisted chemically vapour deposited hydrogenated CxN1−x: H films. Surf. Coat. Technol. 68–69, 621–625 (1994). https://doi.org/10.1016/0257-8972(94)90227-5

    Article  Google Scholar 

  19. 19.

    Shakil, A., Amiri, A., Tang, H., Polycarpou, A.A.: High temperature nanomechanical and nanotribological behavior of sub-5 nm nitrogen-doped carbon overcoat films. Appl. Surf. Sci. 535, 147662 (2021). https://doi.org/10.1016/j.apsusc.2020.147662

    CAS  Article  Google Scholar 

  20. 20.

    Shakil, A., Polycarpou, A.A.: High temperature nanomechanical properties of sub-5 nm nitrogen doped diamond-like carbon using nanoindentation and finite element analysis. J. Appl. Phys. 129, 135302 (2021). https://doi.org/10.1063/5.0037159

    CAS  Article  Google Scholar 

  21. 21.

    Marchon, B., Guo, X.-C., Pathem, B.K., Rose, F., Dai, Q., Feliss, N., Schreck, E., Reiner, J., Mosendz, O., Takano, K., Do, H., Burns, J., Saito, Y.: Head-disk interface materials issues in heat-assisted magnetic recording. IEEE Trans. Magn. 50, 137–143 (2014). https://doi.org/10.1109/TMAG.2013.2283068

    CAS  Article  Google Scholar 

  22. 22.

    Wheeler, J.M., Oliver, R.A., Clyne, T.W.: AFM observation of diamond indenters after oxidation at elevated temperatures. Diam. Relat. Mater. 19, 1348–1353 (2010). https://doi.org/10.1016/j.diamond.2010.07.004

    CAS  Article  Google Scholar 

  23. 23.

    Lee, K.M., Yeo, C.-D., Polycarpou, A.A.: Mechanical property measurements of thin-film carbon overcoat on recording media towards 1Tbit∕in2. J. Appl. Phys. 99, 08G906 (2006). https://doi.org/10.1063/1.2166595

    CAS  Article  Google Scholar 

  24. 24.

    Tayebi, N., Conry, T.F., Polycarpou, A.A.: Determination of hardness from nanoscratch experiments: corrections for interfacial shear stress and elastic recovery. J. Mater. Res. 18, 2150–2162 (2003). https://doi.org/10.1557/JMR.2003.0301

    CAS  Article  Google Scholar 

  25. 25.

    Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992). https://doi.org/10.1557/JMR.1992.1564

    CAS  Article  Google Scholar 

  26. 26.

    Bowden, F.P., Tabor, D.: Friction, lubrication and wear: a survey of work during the last decade. Br. J. Appl. Phys. 17, 1521–1544 (1966). https://doi.org/10.1088/0508-3443/17/12/301

    CAS  Article  Google Scholar 

  27. 27.

    Schiros, T., Nordlund, D., Pálová, L., Prezzi, D., Zhao, L., Kim, K.S., Wurstbauer, U., Gutiérrez, C., Delongchamp, D., Jaye, C., Fischer, D., Ogasawara, H., Pettersson, L.G.M., Reichman, D.R., Kim, P., Hybertsen, M.S., Pasupathy, A.N.: Connecting dopant bond type with electronic structure in N-doped graphene. Nano Lett. 12, 4025–4031 (2012). https://doi.org/10.1021/nl301409h

    CAS  Article  Google Scholar 

  28. 28.

    Kaciulis, S.: Spectroscopy of carbon: from diamond to nitride films. Surf. Interface Anal. 44, 1155–1161 (2012)

    CAS  Article  Google Scholar 

  29. 29.

    Mezzi, A., Kaciulis, S.: Surface investigation of carbon films: from diamond to graphite. Surf. Interface Anal. 42, 1082–1084 (2010)

    CAS  Article  Google Scholar 

  30. 30.

    Mizokawa, Y., Miyasato, T., Nakamura, S., Geib, K.M., Wilmsen, C.W.: Comparison of the CKLL first-derivative auger spectra from XPS and AES using diamond, graphite, SiC and diamond-like-carbon films. Surf. Sci. 182, 431–438 (1987)

    CAS  Article  Google Scholar 

  31. 31.

    Mérel, P., Tabbal, M., Chaker, M., Moisa, S., Margot, J.: Direct evaluation of the sp3 content in diamond-like-carbon films by XPS. Appl. Surf. Sci. 136, 105–110 (1998). https://doi.org/10.1016/S0169-4332(98)00319-5

    Article  Google Scholar 

  32. 32.

    Lascovich, J.C., Giorgi, R., Scaglione, S.: Evaluation of the sp2/sp3 ratio in amorphous carbon structure by XPS and XAES. Appl. Surf. Sci. 47, 17–21 (1991)

    CAS  Article  Google Scholar 

  33. 33.

    Mizokawa, Y., Miyasato, T., Nakamura, S., Geib, K.M., Wilmsen, C.W.: The CKLL first-derivative x-ray photoelectron spectroscopy spectra as a fingerprint of the carbon state and the characterization of diamondlike carbon films. J. Vac Sci. Technol. A Vac. Surf. Film 5, 2809–2813 (1987)

    CAS  Article  Google Scholar 

  34. 34.

    Shekhawat, A., Ritchie, R.O.: Toughness and strength of nanocrystalline graphene. Nat. Commun. 7, 10546 (2016). https://doi.org/10.1038/ncomms10546

    CAS  Article  Google Scholar 

  35. 35.

    Wang, H., Maiyalagan, T., Wang, X.: Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2, 781–794 (2012). https://doi.org/10.1021/cs200652y

    CAS  Article  Google Scholar 

  36. 36.

    Reddy, A.L.M., Srivastava, A., Gowda, S.R., Gullapalli, H., Dubey, M., Ajayan, P.M.: Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4, 6337–6342 (2010). https://doi.org/10.1021/nn101926g

    CAS  Article  Google Scholar 

  37. 37.

    Joucken, F., Tison, Y., Le Fèvre, P., Tejeda, A., Taleb-Ibrahimi, A., Conrad, E., Repain, V., Chacon, C., Bellec, A., Girard, Y., Rousset, S., Ghijsen, J., Sporken, R., Amara, H., Ducastelle, F., Lagoute, J.: Charge transfer and electronic doping in nitrogen-doped graphene. Sci. Rep. 5, 14564 (2015). https://doi.org/10.1038/srep14564

    CAS  Article  Google Scholar 

  38. 38.

    Fei, X., Neilson, J., Li, Y., Lopez, V., Garrett, S.J., Gan, L., Gao, H.-J., Gao, L.: Controlled synthesis of nitrogen-doped graphene on ruthenium from azafullerene. Nano Lett. 17, 2887–2894 (2017). https://doi.org/10.1021/acs.nanolett.7b00038

    CAS  Article  Google Scholar 

  39. 39.

    Chatterjee, A., Polycarpou, A.A., Abelson, J.R., Bellon, P.: Nanoscratch study of hard HfB2 thin films using experimental and finite element techniques. Wear 268, 677–685 (2010). https://doi.org/10.1016/j.wear.2009.11.001

    CAS  Article  Google Scholar 

  40. 40.

    Tabbal, M., Mérel, P., Chaker, M., El Khakani, M.A., Herbert, E.G., Lucas, B.N., O’Hern, M.E.: Effect of laser intensity on the microstructural and mechanical properties of pulsed laser deposited diamond-like-carbon thin films. J. Appl. Phys. 85, 3860–3865 (1999). https://doi.org/10.1063/1.369757

    CAS  Article  Google Scholar 

  41. 41.

    Hiratsuka, M., Nakamori, H., Kogo, Y., Sakurai, M., Ohtake, N., Saitoh, H.: Correlation between optical properties and hardness of diamond-like carbon films. J. Solid Mech. Mater. Eng. 7, 187–198 (2013). https://doi.org/10.1299/jmmp.7.187

    Article  Google Scholar 

  42. 42.

    Tallant, D.R., Parmeter, J.E., Siegal, M.P., Simpson, R.L.: The thermal stability of diamond-like carbon. Diam. Relat. Mater. 4, 191–199 (1995). https://doi.org/10.1016/0925-9635(94)00243-6

    CAS  Article  Google Scholar 

  43. 43.

    Rose, F., Wang, N., Smith, R., Xiao, Q.-F., Inaba, H., Matsumura, T., Saito, Y., Matsumoto, H., Dai, Q., Marchon, B., Mangolini, F., Carpick, R.W.: Complete characterization by Raman spectroscopy of the structural properties of thin hydrogenated diamond-like carbon films exposed to rapid thermal annealing. J. Appl. Phys. 116, 123516 (2014). https://doi.org/10.1063/1.4896838

    CAS  Article  Google Scholar 

  44. 44.

    Tsui, T.Y., Pharr, G.M., Oliver, W.C., Chung, Y.W., Cutiongco, E.C., Bhatia, C.S., White, R.L., Rhoades, R.L., Gorbatkins, S.M.: Nanoindentation and nanoscratching of hard coating materials for magnetic disks. In: Materials Research Society Symposium—Proceedings (1995)

  45. 45.

    Zhang, Y., Polychronopoulou, K., Humood, M., Polycarpou, A.A.: High temperature nanotribology of ultra-thin hydrogenated amorphous carbon coatings. Carbon 123, 112–121 (2017). https://doi.org/10.1016/j.carbon.2017.07.047

    CAS  Article  Google Scholar 

  46. 46.

    Chang, W.R., Etsion, I., Bogy, D.B.: Static friction coefficient model for metallic rough surfaces. J. Tribol. 110, 57–63 (1988). https://doi.org/10.1115/1.3261575

    Article  Google Scholar 

  47. 47.

    Bhushan, B.: Introduction to Tribology. Wiley, New York (2013)

    Book  Google Scholar 

  48. 48.

    Gao, G.T., Mikulski, P.T., Harrison, J.A.: Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions. J. Am. Chem. Soc. 124, 7202–7209 (2002). https://doi.org/10.1021/ja0178618

    CAS  Article  Google Scholar 

  49. 49.

    Cui, L., Lu, Z., Wang, L.: Probing the low-friction mechanism of diamond-like carbon by varying of sliding velocity and vacuum pressure. Carbon 66, 259–266 (2014). https://doi.org/10.1016/j.carbon.2013.08.065

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to especially thank Drs. H. Tang, H. Wang, C. Platt and X. Li for sample preparation and helpful discussions. The XPS study was performed at Materials Characterization Facility (MCF), located at Texas A&M University.

Funding

The motivation of this work was through a sponsored research project from Seagate Technology LLC, through Grant No. SRA-32724.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andreas A. Polycarpou.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 267 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shakil, A., Amiri, A. & Polycarpou, A.A. Effect of Carbon Configuration on Mechanical, Friction and Wear Behavior of Nitrogen-Doped Diamond-Like Carbon Films for Magnetic Storage Applications. Tribol Lett 69, 151 (2021). https://doi.org/10.1007/s11249-021-01525-8

Download citation

Keywords

  • Friction
  • Wear
  • Diamond-like carbon
  • Nitrogen doping
  • Magnetic storage
  • HAMR
  • Head disk interface