Skip to main content

Activation Volume in Shear-Driven Chemical Reactions


Interfacial shear-driven or shear-assisted chemical reactions play an important role in many engineering processes, including reactions between lubricant additives and the surfaces of mechanical components and fabrication of surface topographic features. Mechanistic studies of shear-driven chemical reactions often employ a mechanically assisted thermal activation model from which a so-called activation volume can be defined. Activation volume is important because it quantifies the efficiency of interfacial shear to drive the reaction. Recent advancements have enabled calculation of activation volume from both nano- and macro-scale experiments as well as simulations. However, the calculated volumes differ by orders of magnitude, even for the same reactant species, and the physical interpretations vary correspondingly. Here, we review how activation volume has been measured and interpreted for shear-driven reactions in the literature with the goal of guiding future efforts to understand and use this important parameter for engineering design through tribochemistry.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1

available at the reaction sites. The reaction coordinate is not necessarily the same for the same reaction driven mechanically or thermally (Color figure online)

Fig. 2

Reproduced with permission from Ref. [29]

Fig. 3

Reproduced with permission from Ref. [30]

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Do, J., Friscic, T.: Mechanochemistry: a force of synthesis. ACS Cent. Sci. 3, 13–19 (2017)

    CAS  Google Scholar 

  2. 2.

    Gates, R.S., Hsu, M., Klaus, E.E.: Tribochemical mechanism of alumina with water. Tribol. Trans. 32, 357–363 (1989)

    CAS  Google Scholar 

  3. 3.

    Zhang, J., Ewen, J.P., Ueda, M., Wong, J.S.S., Spikes, H.A.: Mechanochemistry of zinc dialkyldithiophosphate on steel surfaces under elastohydrodynamic lubrication conditions. ACS Appl. Mater. Interfaces 12, 6662–6676 (2020)

    CAS  Google Scholar 

  4. 4.

    Zhou, Y., Leonard, D.N., Guo, W., Qu, J.: Understanding tribofilm formation mechanisms in ionic liquid lubrication. Sci. Rep. 7, 8426 (2017)

    Google Scholar 

  5. 5.

    Shimizu, Y., Spikes, H.A.: The tribofilm formation of zddp under reciprocating pure sliding conditions. Tribol. Lett. 64, 46 (2016)

    Google Scholar 

  6. 6.

    Morina, A., Neville, A.: Understanding the composition and low friction tribofilm formation/removal in boundary lubrication. Tribol. Int. 40, 1696–1704 (2007)

    CAS  Google Scholar 

  7. 7.

    Komvopoulos, K., Li, H.: The effect of tribofilm formation and humidity on the friction and wear properties of ceramic materials. J. Tribol. 114, 131–140 (1992)

    CAS  Google Scholar 

  8. 8.

    Equey, S., Roos, S., Mueller, U., Hauert, R., Spencer, N.D., Crockett, R.: Tribofilm formation from ZnDTP on diamond-like carbon. Wear 264, 316–321 (2008)

    CAS  Google Scholar 

  9. 9.

    Fujita, H., Spikes, H.A.: The formation of zinc dithiophosphate antiwear films. Proc. Inst. Mech. Eng. J 218, 265–278 (2004)

    CAS  Google Scholar 

  10. 10.

    Spikes, H.: The History and Mechanisms of ZDDP. Tribol. Lett. 17, 469–489 (2004)

    CAS  Google Scholar 

  11. 11.

    Fields, S.: ZDDP: going, going or not? Tribol. Lubr. Technol. 61, 24–30 (2005)

    CAS  Google Scholar 

  12. 12.

    Guinther, G.H., Danner, M.M.: Development of an engine-based catalytic converter poisoning test to assess the impact of volatile ZDDP decomposition products from passenger car engine oils. SAE Trans. 116, 1003–1012 (2007)

    Google Scholar 

  13. 13.

    Spikes, H.A.: Beyond ZDDP. Lubr. Sci. 20, 77–78 (2008)

    Google Scholar 

  14. 14.

    de Barros’Bouchet, M.I., Martin, J.M., Le-Mogne, T., Vacher, B.: Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives. Tribol. Int. 38, 257–264 (2005)

    Google Scholar 

  15. 15.

    Wang, Y.G., Zhang, L.C., Biddut, A.: Chemical effect on the material removal rate in the CMP of silicon wafers. Wear 270, 312–316 (2011)

    CAS  Google Scholar 

  16. 16.

    Sniegowski, J.J., Boer, M.P.D.: IC-compatible polysilicon surface micromachining. Annu. Rev. Mater. Sci. 30, 299–333 (2000)

    CAS  Google Scholar 

  17. 17.

    Hetherington, D., Sniegowski, J.: Improved polysilicon surface-micromachined micromirror devices using chemical-mechanical polishing. SPIE (1998)

  18. 18.

    Fischer, T.E.: Tribochemistry. Annu. Rev. Mater. Sci. 18, 303–323 (1988)

    Google Scholar 

  19. 19.

    Krishnan, M., Nalaskowski, J., Cook, L.: Chemical mechanical planarization: slurry chemistry, materials, and mechanisms. Chem. Rev. 110, 178–204 (2010)

    CAS  Google Scholar 

  20. 20.

    Martini, A., Eder, S.J., Dörr, N.: Tribochemistry: a review of reactive molecular dynamics simulations. Lubricants 8, 44 (2020)

    Google Scholar 

  21. 21.

    Beyer, M.K.: The mechanical strength of a covalent bond calculated by density functional theory. J. Chem. Phys. 112, 7307–7312 (2000)

    CAS  Google Scholar 

  22. 22.

    Jacobs, T.D.B., Gotsmann, B., Lantz, M.A., Carpick, R.W.: On the application of transition state theory to atomic-scale wear. Tribol. Lett. 39, 257–271 (2010)

    Google Scholar 

  23. 23.

    Spikes, H., Tysoe, W.T.: On the commonality between theoretical models for fluid and solid friction wear and tribochemistry. Tribol. Lett. 59, 21 (2015)

    Google Scholar 

  24. 24.

    Spikes, H.: Stress-augmented thermal activation: tribology feels the force. Friction 6, 1–31 (2018)

    Google Scholar 

  25. 25.

    Tysoe, W.T.: On stress-induced tribochemical reaction rates. Tribol. Lett. 65, 48 (2017)

    Google Scholar 

  26. 26.

    Konda, S., Brantley, J., Bielawski, C., Makarov, D.: Chemical reactions modulated by mechanical stress: extended Bell theory. J. Chem. Phys. 135, 164103 (2011)

    Google Scholar 

  27. 27.

    Jacobs, T.D.B., Martini, A.: Measuring and understanding contact area at the nanoscale: a review. Appl. Mech. Rev. 69, 061101 (2017)

    Article  Google Scholar 

  28. 28.

    Ciavarella, M., Joe, J., Papangelo, A., Barber, J.R.: The role of adhesion in contact mechanics. J. R. Soc. Interface 16, 20180738 (2019)

    CAS  Google Scholar 

  29. 29.

    He, X., Liu, Z., Ripley, L.B., Swensen, V.L., Griffin-Wiesner, I.J., Gulner, B.R., et al.: Empirical relationship between interfacial shear stress and contact pressure in micro- and macro-scale friction. Tribol. Int. 155, 106780 (2021)

    CAS  Google Scholar 

  30. 30.

    Yeon, J., He, X., Martini, A., Kim, S.H.: Mechanochemistry at solid surfaces: polymerization of adsorbed molecules by mechanical shear at tribological interfaces. ACS Appl. Mater. Interfaces 9, 3142–3148 (2017)

    CAS  Google Scholar 

  31. 31.

    Adams, H., Miller, B.P., Kotvis, P.V., Furlong, O.J., Martini, A., Tysoe, W.T.: In situ measurements of boundary film formation pathways and kinetics: dimethyl and diethyl disulfide on copper. Tribol. Lett. 62, 12 (2016)

    Google Scholar 

  32. 32.

    Righi, M.C., Loehle, S., Bouchet, M., Philippon, D., Martin, J.M.: Trimethyl-phosphite dissociative adsorption on iron by combined first-principle calculations and XPS experiments. RCS Adv. 5, 101162–101168 (2015)

    CAS  Google Scholar 

  33. 33.

    Righi, M.C., Loehle, S., Bouchet, M., Mambingo-Doumbe, S., Martin, J.M.: A comparative study on the functionality of S- and P-based lubricant additives by combined first principles and experimental analysis. RCS Adv. 6, 47753–47760 (2016)

    CAS  Google Scholar 

  34. 34.

    Loehlé, S., Righi, M.C.: First principles study of organophosphorus additives in boundary lubrication conditions: effects of hydrocarbon chain length. Lubr. Sci. 29, 485–491 (2017)

    Google Scholar 

  35. 35.

    Boscoboinik, A., Olson, D., Adams, H., Hopper, N., Tysoe, W.T.: Measuring and modelling mechanochemical reaction kinetics. Chem. Commun. 56, 7730–7733 (2020)

    CAS  Google Scholar 

  36. 36.

    Loehle, S., Righi, M.C.: Ab initio molecular dynamics simulation of tribochemical reactions involving phosphorus additives at sliding iron interfaces. Lubricants 6, 31 (2018)

    Google Scholar 

  37. 37.

    Li, Z., Szlufarska, I.: Physical origin of the mechanochemical coupling at interfaces. Phys. Rev. Lett. 126, 076001 (2021)

    Article  Google Scholar 

  38. 38.

    Khajeh, A., He, X., Yeon, J., Kim, S.H., Martini, A.: Mechanochemical association reaction of interfacial molecules driven by shear. Langmuir 34, 5971–5977 (2018)

    CAS  Google Scholar 

  39. 39.

    Rafatijo, H.: Computing activation energies of non-thermal reactions. Mol. Phys. 118, e17499512 (2020)

    Google Scholar 

  40. 40.

    Felts, J.R., Oyer, A.J., Hernández, S.C., Whitener, K.E., Jr., Robinson, J.T., Walton, S.G., et al.: Direct mechanochemical cleavage of functional groups from graphene. Nat. Commun. 6, 6467 (2015)

    CAS  Google Scholar 

  41. 41.

    Park, N.S., Kim, M.W., Langford, S.C., Dickinson, J.T.: Atomic layer wear of single-crystal calcite in aqueous solution using scanning force microscopy. J. Appl. Phys. 80, 2680–2686 (1996)

    CAS  Google Scholar 

  42. 42.

    Dickinson, J.T., Park, N.S., Kim, M.W., Langford, S.C.: A scanning force microscope study of a tribochemicalsystem: stress-enhanced dissolution. Tribol. Lett. 3, 69–80 (1997)

    CAS  Google Scholar 

  43. 43.

    Gotsmann, B., Lantz, M.A.: Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101, 125501 (2008)

    Google Scholar 

  44. 44.

    Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M.A., Despont, M., et al.: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5, 181–185 (2010)

    CAS  Google Scholar 

  45. 45.

    Vahdat, V., Ryan, K.E., Keating, P.L., Jiang, Y., Adiga, S.P., Schall, J.D., et al.: Atomic-scale wear of amorphous hydrogenated carbon during intermittent contact: a combined study using experiment, simulation, and theory. ACS Nano 8, 7027–7040 (2014)

    CAS  Google Scholar 

  46. 46.

    Jacobs, T.D.B., Carpick, R.W.: Nanoscale wear as a stress-assisted chemical reaction. Nat. Nanotechnol. 8, 108–112 (2013)

    CAS  Google Scholar 

  47. 47.

    Shao, Y., Jacobs, T.D.B., Jiang, Y., Turner, K.T., Carpick, R.W., Falk, M.L.: Multibond model of single-asperity tribochemical wear at the nanoscale. ACS Appl. Mater. Interfaces 9, 35333–35340 (2017)

    CAS  Google Scholar 

  48. 48.

    Sheehan, P.E.: The wear kinetics of NaCl under dry nitrogen and at low humidities. Chem. Phys. Lett. 410, 151–155 (2005)

    CAS  Google Scholar 

  49. 49.

    Cao, Z., Zhao, W., Liang, A., Zhang, J.: A general engineering applicable superlubricity: hydrogenated amorphous carbon film containing nano diamond particles. Adv. Mater. Interfaces 4, 1601224 (2017)

    Google Scholar 

  50. 50.

    Chen, L., Xiao, C., He, X., Yu, B., Kim, S.H., Qian, L.: Friction and tribochemical wear behaviors of native oxide layer on silicon at nanoscale. Tribol. Lett. 65, 139 (2017)

    Google Scholar 

  51. 51.

    Chen, L., Wen, J., Zhang, P., Yu, B., Chen, C., Ma, T., et al.: Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions. Nat. Commun. 9, 1542 (2018)

    Google Scholar 

  52. 52.

    Xiao, C., Xin, X., He, X., Wang, H., Chen, L., Kim, S.H., et al.: Surface structure dependence of mechanochemical etching: scanning probe-based nanolithography study on Si(100), Si(110), and Si(111). ACS Appl. Mater. Interfaces 11, 20583–20588 (2019)

    CAS  Google Scholar 

  53. 53.

    Xiao, C., Deng, C., Zhang, P., Qian, L., Kim, S.H.: Interplay between solution chemistry and mechanical activation in friction-induced material removal of silicon surface in aqueous solution. Tribol. Int. 148, 106319 (2020)

    CAS  Google Scholar 

  54. 54.

    Xiao, C., Chen, C., Wang, H., Chen, L., Jiang, L., Yu, B., et al.: Effect of counter-surface chemistry on defect-free material removal of monocrystalline silicon. Wear 426–427, 1233–1239 (2019)

    Google Scholar 

  55. 55.

    Xiao, C., Li, J., Guo, J., Zhang, P., Yu, B., Chen, L., et al.: Role of mechanically-driven distorted microstructure in mechanochemical removal of silicon. Appl. Surf. Sci. 520, 146337 (2020)

    CAS  Google Scholar 

  56. 56.

    Li, Z., Szlufarska, I.: Physical origin of the mechanochemical coupling at interfaces. Phys. Rev. Lett. 126, 076001 (2021)

    CAS  Google Scholar 

  57. 57.

    Gao, J., Xiao, C., Feng, C., Wu, L., Yu, B., Qian, L., et al.: Oxidation-induced changes of mechanochemical reactions at GaAs–SiO2 interface: the competitive roles of water adsorption, mechanical property, and oxidized structure. Appl. Surf. Sci. 548, 149205 (2021)

    CAS  Google Scholar 

  58. 58.

    Raghuraman, S., Boonpuek, P., King, K.H., Ye, Z., Felts, J.R.: The role of speed in atomic scale wear. J. Phys. Chem. C 125, 4139–4145 (2021)

    CAS  Google Scholar 

  59. 59.

    Wang, K., Zhang, J., Ma, T., Liu, Y., Song, A., Chen, X., et al.: Unraveling the friction evolution mechanism of diamond-like carbon film during nanoscale running-in process toward superlubricity. Small 17, 2005607 (2021)

    CAS  Google Scholar 

  60. 60.

    Chen, X., Kawai, K., Zhang, H., Fukuzawa, K., Koga, N., Itoh, S., et al.: ReaxFF reactive molecular dynamics simulations of mechano-chemical decomposition of perfluoropolyether lubricants in heat-assisted magnetic recording. J. Phys. Chem. C 124, 22496–22505 (2020)

    CAS  Google Scholar 

  61. 61.

    Gosvami, N.N., Bares, J.A., Mangolini, F., Konicek, A.R., Yablon, D.G., Carpick, R.W.: Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science 348, 102–106 (2015)

    CAS  Google Scholar 

  62. 62.

    Zhang, J., Spikes, H.: On the mechanism of ZDDP antiwear film formation. Tribol. Lett. 63, 24 (2016)

    Google Scholar 

  63. 63.

    Ernens, D., Langedijk, G., Smit, P., de Rooij, M.B., Pasaribu, H.R., Schipper, D.J.: Characterization of the adsorption mechanism of manganese phosphate conversion coating derived tribofilms. Tribol. Lett. 66, 131 (2018)

    CAS  Google Scholar 

  64. 64.

    He, X., Ngo, D., Kim, S.H.: Mechanochemical reactions of adsorbates at tribological interfaces: tribopolymerizations of allyl alcohol coadsorbed with water on silicon oxide. Langmuir 35, 15451–15458 (2019)

    CAS  Google Scholar 

  65. 65.

    He, X., Kim, S.H.: Mechanochemistry of physisorbed molecules at tribological interfaces: molecular structure dependence of tribochemical polymerization. Langmuir 33, 2717–2724 (2017)

    CAS  Google Scholar 

  66. 66.

    He, X., Kim, S.H.: Surface chemistry dependence of mechanochemical reaction of adsorbed molecules: an experimental study on tribopolymerization of α-pinene on metal, metal oxide, and carbon surfaces. Langmuir 34, 2432–2440 (2018)

    CAS  Google Scholar 

  67. 67.

    Johnson, B., Wu, H., Desanker, M., Pickens, D., Chung, Y.-W., Wang, Q.J.: Direct formation of lubricious and wear-protective carbon films from phosphorus- and sulfur-free oil-soluble additives. Tribol. Lett. 66, 2 (2017)

    Google Scholar 

  68. 68.

    Ghanbarzadeh, A., Parsaeian, P., Morina, A., Wilson, M.C.T., van Eijk, M.C.P., Nedelcu, I., et al.: A semi-deterministic wear model considering the effect of zinc dialkyl dithiophosphate tribofilm. Tribol. Lett. 61, 12 (2015)

    Google Scholar 

  69. 69.

    Akchurin, A., Bosman, R.: A deterministic stress-activated model for tribo-film growth and wear simulation. Tribol. Lett. 65, 59 (2017)

    Google Scholar 

  70. 70.

    Dorgham, A., Parsaeian, P., Azam, A., Wang, C., Morina, A., Neville, A.: Single-asperity study of the reaction kinetics of P-based triboreactive films. Tribol. Int. 133, 288–296 (2019)

    CAS  Google Scholar 

  71. 71.

    Singer, I.L., Bolster, R.N., Wegand, J., Fayeulle, S., Stupp, B.C.: Hertzian stress contribution to low friction behavior of thin MoS2 coatings. Appl. Phys. Lett. 57, 995–997 (1990)

    CAS  Google Scholar 

  72. 72.

    Garvey, M., Weinert, M., Tysoe, W.T.: On the pressure dependence of shear strengths in sliding, boundary-layer friction. Tribol. Lett. 44, 67 (2011)

    CAS  Google Scholar 

  73. 73.

    He, X., Pollock, A., Kim, S.H.: Effect of gas environment on mechanochemical reaction: a model study with tribo-polymerization of α-pinene in inert, oxidative, and reductive gases. Tribol. Lett. 67, 25 (2019)

    Google Scholar 

  74. 74.

    Chen, Z., Khajeh, A., Martini, A., Kim, S.H.: Chemical and physical origins of friction on surfaces with atomic steps. Sci. Adv. 5, eaaw0513 (2019)

    CAS  Google Scholar 

  75. 75.

    Chen, Z., Khajeh, A., Martini, A., Kim, S.H.: Origin of high friction at graphene step edges on graphite. ACS Appl. Mater. Interfaces 13, 1895–1902 (2020)

    Google Scholar 

  76. 76.

    Chen, Z., Khajeh, A., Martini, A., Kim, S.H.: Identifying physical and chemical contributions to friction: a comparative study of chemically inert and active graphene step edges. ACS Appl. Mater. Interfaces 12, 30007–30015 (2020)

    CAS  Google Scholar 

  77. 77.

    Schwarz, U.D., Hölscher, H.: Exploring and explaining friction with the prandtl-tomlinson model. ACS Nano 10, 38–41 (2016)

    CAS  Google Scholar 

  78. 78.

    Rigney, D.A., Hirth, J.P.: Plastic deformation and sliding friction of metals. Wear 53, 345–370 (1979)

    CAS  Google Scholar 

  79. 79.

    Klein, J.: Shear, friction, and lubrication forces between polymer-bearing surfaces. Annu. Rev. Mater. Sci. 26, 581–612 (1996)

    CAS  Google Scholar 

  80. 80.

    Ewen, J.P., Gao, H., Müser, M.H., Dini, D.: Shear heating, flow, and friction of confined molecular fluids at high pressure. Phys. Chem. Chem. Phys. 21, 5813–5823 (2019)

    CAS  Google Scholar 

  81. 81.

    Barrie, P.J.: The mathematical origins of the kinetic compensation effect: 2. The effect of systematic errors. Phys. Chem. Chem. Phys. 14, 327–336 (2012)

    CAS  Google Scholar 

  82. 82.

    Chen, L., He, H., Wang, X., Kim, S.H., Qian, L.: Tribology of Si/SiO2 in humid air: transition from severe chemical wear to wearless behavior at nanoscale. Langmuir 31, 149–156 (2015)

    Google Scholar 

  83. 83.

    Chen, L., Yang, Y.J., He, H.T., Kim, S.H., Qian, L.M.: Effect of coadsorption of water and alcohol vapor on the nanowear of silicon. Wear 332–333, 879–884 (2015)

    Google Scholar 

  84. 84.

    Zhang, P., He, H., Chen, C., Xiao, C., Chen, L., Qian, L.: Effect of abrasive particle size on tribochemical wear of monocrystalline silicon. Tribol. Int. 109, 222–228 (2017)

    CAS  Google Scholar 

Download references


This work was supported by the National Science Foundation (Grant Nos. CMMI-2038494 and 2038499). The authors also thank Fakhrul Hasan Bhuiyan and Yu Sheng Li for assistance in confirming the activation volumes reported in Tables 1 and 2.

Author information



Corresponding authors

Correspondence to Ashlie Martini or Seong H. Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martini, A., Kim, S.H. Activation Volume in Shear-Driven Chemical Reactions. Tribol Lett 69, 150 (2021).

Download citation


  • Tribochemistry
  • Activation volume
  • Tribofilms