Skip to main content

In-Depth Microstructural Analysis of Galling Deformation in Stainless Steels

Abstract

Galling resistance of different stainless steels was investigated using the ASTM G98 standard. Galling resistance is often only addressed via galling threshold but an increasing number of studies nowadays focus on galling severity. During these studies, three galling categories have recently been identified in stainless steel, based on surface topography evolution, SEM observation, and local chemical analyses. These three categories of galling, namely tolerant, moderate galling, and severe galling have been depicted but still poorly understood. The objective of this work is to determine the relationships between the microstructure, its evolution, and the galling response of the different materials. The authors aim to clarify these relationships and propose an explanation of the consequences of galling on the microstructure of the galled samples. A correlation between the galling severity and the subsurface plastic behaviors is proposed. In particular, the mobility of dislocations in close surface is investigated as a plausible parameter determining galling severity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. 1.

    Ocken, H.: The galling wear resistance of new iron-base hardfacing alloys: a comparison with established cobalt- and nickel-base alloys. Surf. Coat. Technol. 76, 456 (1995)

    Article  Google Scholar 

  2. 2.

    Hummel, S.R., Helm, J.: Repeatability estimation in galling resistance testing. J. Tribol. 132, 044504–044504 (2010). https://doi.org/10.1115/1.4002504

    Article  Google Scholar 

  3. 3.

    Hummel, S.R.: Development of a galling resistance test method with a uniform stress distribution. Tribol. Int. 41, 175–180 (2008). https://doi.org/10.1016/j.triboint.2007.07.009

    CAS  Article  Google Scholar 

  4. 4.

    Voss, B.M., Pereira, M.P., Rolfe, B.F., Doolan, M.C.: A new methodology for measuring galling wear severity in high strength steels. Wear 390–391, 334–345 (2017). https://doi.org/10.1016/j.wear.2017.09.002

    CAS  Article  Google Scholar 

  5. 5.

    Rogers, S.R., Bowden, D., Unnikrishnan, R., Scenini, F., Preuss, M., Stewart, D., Dini, D., Dye, D.: The interaction of galling and oxidation in 316L stainless steel. Wear 450–451, 203234 (2020). https://doi.org/10.1016/j.wear.2020.203234

    CAS  Article  Google Scholar 

  6. 6.

    Lesage, T., Bouvier, S., Oudriss, A., Chen, Y., Risbet, M., Mazeran, P.-E.: Galling categories investigations in stainless steels. Wear 460–461, 203413 (2020). https://doi.org/10.1016/j.wear.2020.203413

    CAS  Article  Google Scholar 

  7. 7.

    Karlsson, P., Gåård, A., Krakhmalev, P., Bergström, J.: Galling resistance and wear mechanisms for cold-work tool steels in lubricated sliding against high strength stainless steel sheets. Wear 286–287, 92–97 (2012). https://doi.org/10.1016/j.wear.2011.04.002

    CAS  Article  Google Scholar 

  8. 8.

    Schedin, E.: Galling mechanisms in sheet forming operations. Wear 179, 123–128 (1994). https://doi.org/10.1016/0043-1648(94)90229-1

    CAS  Article  Google Scholar 

  9. 9.

    Shanbhag, V.V., Rolfe, B.F., Griffin, J.M., Arunachalam, N., Pereira, M.P.: Understanding galling wear initiation and progression using force and acoustic emissions sensors. Wear 436–437, 202991 (2019). https://doi.org/10.1016/j.wear.2019.202991

    CAS  Article  Google Scholar 

  10. 10.

    Skåre, T., Thilderkvist, P., Ståhl, J.-E.: Monitoring of friction processes by the means of acoustic emission measurements—deep drawing of sheet metal. J. Mater. Process. Technol. 80–81, 263–272 (1998). https://doi.org/10.1016/S0924-0136(98)00130-7

    Article  Google Scholar 

  11. 11.

    Shanbhag, V.V., Rolfe, B.F., Arunachalam, N., Pereira, M.P.: Investigating galling wear behaviour in sheet metal stamping using acoustic emissions. Wear 414–415, 31–42 (2018). https://doi.org/10.1016/j.wear.2018.07.003

    CAS  Article  Google Scholar 

  12. 12.

    Saidoun, A., Herve, C., Chen, Y.M., Lesage, T., Bouvier, S.: Galling detection by acoustic emission (AE) according to ASTM G98 (oral presentation). In: EWGAE (2018).

  13. 13.

    Ko, D.-C., Kim, S.-G., Kim, B.-M.: Influence of microstructure on galling resistance of cold-work tool steels with different chemical compositions when sliding against ultra-high-strength steel sheets under dry condition. Wear 338–339, 362–371 (2015). https://doi.org/10.1016/j.wear.2015.07.014

    CAS  Article  Google Scholar 

  14. 14.

    Smith, R., Doran, M., Gandy, D., Babu, S., Wu, L., Ramirez, A.J., Anderson, P.M.: Development of a gall-resistant stainless-steel hardfacing alloy. Mater. Des. (2018). https://doi.org/10.1016/j.matdes.2018.01.020

    Article  Google Scholar 

  15. 15.

    Hsu, K.-L., Ahn, T.M., Rigney, D.A.: Friction, wear and microstructure of unlubricated austenitic stainless steels. Wear 60, 13–37 (1980). https://doi.org/10.1016/0043-1648(80)90247-1

    CAS  Article  Google Scholar 

  16. 16.

    Hubert, C., Marteau, J., Deltombe, R., Chen, Y.M., Bigerelle, M.: Roughness characterization of the galling of metals. Surf. Topogr. Metrol. Prop. 2, 034002 (2014). https://doi.org/10.1088/2051-672X/2/3/034002

    CAS  Article  Google Scholar 

  17. 17.

    Pujante, J., Pelcastre, L., Vilaseca, M., Casellas, D., Prakash, B.: Investigations into wear and galling mechanism of aluminium alloy-tool steel tribopair at different temperatures. Wear 308, 193–198 (2013). https://doi.org/10.1016/j.wear.2013.06.015

    CAS  Article  Google Scholar 

  18. 18.

    Wang, Z., Yang, M., Yoshikawa, Y.: A prediction method of galling position in square cup drawing. Procedia Eng. 81, 1830–1835 (2014). https://doi.org/10.1016/j.proeng.2014.10.241

    Article  Google Scholar 

  19. 19.

    Vikström, J.: Galling resistance of hardfacing alloys replacing Stellite. Wear 179, 143–146 (1994). https://doi.org/10.1016/0043-1648(94)90232-1

    Article  Google Scholar 

  20. 20.

    Heikkilä, I.: Influence of tool steel microstructure on galling resistance against stainless steel. In: Dalmaz, G., Lubrecht, A.A., Dowson, D., Priest, M. (eds.) Tribology Series, pp. 641–649. Elsevier, Amsterdam (2003)

    Google Scholar 

  21. 21.

    Karlsson, P., Krakhmalev, P., Gåård, A., Bergström, J.: Influence of work material proof stress and tool steel microstructure on galling initiation and critical contact pressure. Tribol. Int. 60, 104–110 (2013). https://doi.org/10.1016/j.triboint.2012.10.023

    CAS  Article  Google Scholar 

  22. 22.

    Fontalvo, G.A., Humer, R., Mitterer, C., Sammt, K., Schemmel, I.: Microstructural aspects determining the adhesive wear of tool steels. Wear 260, 1028–1034 (2006). https://doi.org/10.1016/j.wear.2005.07.001

    CAS  Article  Google Scholar 

  23. 23.

    Gåård, A.: Influence of tool microstructure on galling resistance. Tribol. Int. 57, 251–256 (2013). https://doi.org/10.1016/j.triboint.2012.08.022

    CAS  Article  Google Scholar 

  24. 24.

    Nohara, K., Ono, Y., Ohashi, N.: Composition and grain size dependencies of strain-induced martensitic transformation in metastable austenitic stainless steels. Tetsu-To-Hagane/J. Iron Steel Inst. Jpn. 100, R27–R29 (2014)

    Article  Google Scholar 

  25. 25.

    Bhansali, K.J., Miller, A.E.: The role of stacking fault energy on galling and wear behavior. Wear 75, 241–252 (1982). https://doi.org/10.1016/0043-1648(82)90151-X

    CAS  Article  Google Scholar 

  26. 26.

    Allain, S., Chateau, J.-P., Dahmoun, D., Bouaziz, O.: Modeling of mechanical twinning in a high manganese content austenitic steel. Mater. Sci. Eng. A 387–389, 272–276 (2004). https://doi.org/10.1016/j.msea.2004.05.038

    CAS  Article  Google Scholar 

  27. 27.

    Meric de Bellefon, G., van Duysen, J.C., Sridharan, K.: Composition-dependence of stacking fault energy in austenitic stainless steels through linear regression with random intercepts. J. Nucl. Mater. 492, 227–230 (2017). https://doi.org/10.1016/j.jnucmat.2017.05.037

    CAS  Article  Google Scholar 

  28. 28.

    Poole, B., Barzdajn, B., Dini, D., Stewart, D., Dunne, F.P.E.: The roles of adhesion, internal heat generation and elevated temperatures in normally loaded, sliding rough surfaces. Int. J. Solids Struct. 185–186, 14–28 (2020). https://doi.org/10.1016/j.ijsolstr.2019.09.012

    CAS  Article  Google Scholar 

  29. 29.

    Barzdajn, B., Paxton, A.T., Stewart, D., Dunne, F.P.E.: A crystal plasticity assessment of normally-loaded sliding contact in rough surfaces and galling. J. Mech. Phys. Solids (2018). https://doi.org/10.1016/j.jmps.2018.08.004

    Article  Google Scholar 

  30. 30.

    Persson, D.H.E., Jacobson, S., Hogmark, S.: Effect of temperature on friction and galling of laser processed Norem 02 and Stellite 21. Wear 255, 498–503 (2003). https://doi.org/10.1016/S0043-1648(03)00122-4

    CAS  Article  Google Scholar 

  31. 31.

    Lesage, T.: Galling of stainless steels: influence of material nature, microstructure and thermochemical heat treatments, PhD dissertation (in French). Université de Technologie de Compiègne, Compiègne (2019)

    Google Scholar 

  32. 32.

    Schuh, C.A., Kumar, M., King, W.E.: Universal features of grain boundary networks in FCC materials. J. Mater. Sci. 40, 847–852 (2005). https://doi.org/10.1007/s10853-005-6500-9

    CAS  Article  Google Scholar 

  33. 33.

    Lu, X., Zhang, X., Shi, M., Roters, F., Kang, G., Raabe, D.: Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper. Int. J. Plast 113, 52–73 (2019). https://doi.org/10.1016/j.ijplas.2018.09.007

    CAS  Article  Google Scholar 

  34. 34.

    Jamaati, R., Toroghinejad, M.R., Amirkhanlou, S., Edris, H.: Production of nanograin microstructure in steel nanocomposite. Mater. Sci. Eng. A 638, 143–151 (2015). https://doi.org/10.1016/j.msea.2015.04.014

    CAS  Article  Google Scholar 

  35. 35.

    Watanabe, T.: Approach to grain boundary design for strong and ductile polycrystals. Res. Mech. 11, 47–84 (1984)

    CAS  Google Scholar 

  36. 36.

    Zhang, M.-X., Kelly, P.M.: Accurate orientation relationship between ferrite and austenite in low carbon martensite and granular bainite. Scr. Mater. 47, 749–755 (2002). https://doi.org/10.1016/S1359-6462(02)00196-3

    CAS  Article  Google Scholar 

  37. 37.

    Venables, J.A.: The nucleation and propagation of deformation twins. J. Phys. Chem. Solids 25, 693–700 (1964). https://doi.org/10.1016/0022-3697(64)90178-7

    CAS  Article  Google Scholar 

  38. 38.

    Boas, M., Rosen, A.: Effect of load on the adhesive wear of steels. Wear 44, 213–222 (1977). https://doi.org/10.1016/0043-1648(77)90140-5

    CAS  Article  Google Scholar 

  39. 39.

    Zhao, G., Fan, J., Zhang, H., Zhang, Q., Yang, J., Dong, H., Xu, B.: Exceptional mechanical properties of ultra-fine grain AZ31 alloy by the combined processing of ECAP, rolling and EPT. Mater. Sci. Eng. A 731, 54–60 (2018). https://doi.org/10.1016/j.msea.2018.05.112

    CAS  Article  Google Scholar 

  40. 40.

    Anthony, K.C.: Wear-resistant cobalt-free alloys. J. Mech. Eng. Technol. 35, 52–60 (1983)

    Google Scholar 

  41. 41.

    Samih, Y.: Thermomechanical surface treatments of austenitic stainless steels and their effects on subsequent nitriding during “Duplex” treatments, PhD dissertation, Université de Lorraine (2014). http://docnum.univ-lorraine.fr/public/DDOC_T_2014_0100_SAMIH.pdf.

Download references

Acknowledgements

The authors would like to thank Y.M. Chen (CETIM) for helpful discussions. The authors are also deeply thankful to A. Oudriss and X. Feaugas (LaSIE, Université de La Rochelle) for their TEM investigations performed on the galled samples.

Funding

The authors would like to thank the Hauts-De-France Region (Grant No. RDIPROJFT-000106) and the European Regional Development (ERDF) 2014/2020 (Grant No. PI0001672) for funding of this work.

Author information

Affiliations

Authors

Contributions

TL: Conceptualization, Methodology, Validation, Formal Analyses, Investigation, Data Curation, Writing—Review And Editing, and Visualization. SB: Conceptualization, Formal Analysis, Resources, Writing—Original Draft, Writing, Supervision, Project Administration, and Funding Acquisition. MR: Conceptualization, Methodology, Supervision. PEM: Supervision, and Methodology.

Corresponding author

Correspondence to T. Lesage.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lesage, T., Bouvier, S., Risbet, M. et al. In-Depth Microstructural Analysis of Galling Deformation in Stainless Steels. Tribol Lett 69, 145 (2021). https://doi.org/10.1007/s11249-021-01520-z

Download citation

Keywords

  • Galling
  • Galling severity
  • Stainless steel
  • Microstructure evolution