Skip to main content

Advertisement

Log in

Achieving Macroscale Liquid Superlubricity Using Lubricant Mixtures of Glycerol and Propanediol

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Friction and wear are ubiquitous in moving mechanical systems, and achieving vanishing friction and wear could significantly improve the energy efficiency and extend the service life of mechanical components. In this paper, two types of propanediol, viz. 1,3-propanediol (13-PD) and 1,2-propanediol (12-PD), have been selected to be mixed with glycerol for superlubricity performance. The results show that the lubricant mixture of 13-PD and glycerol (13-PD/glycerol) is effective in providing superlow friction (COF < 0.01) for steel tribopairs under an ambient atmosphere environment with little surface damage caused. However, 12-PD that exhibits the same chemical formula as 13-PD except for the configuration of hydroxyl groups is ineffective in superlubricity achievement. Experimental and molecular dynamics simulation results show that the superlow friction realized by the lubricant mixture of glycerol and 13-PD is related to the enhanced intermolecular hydrogen-bonding interaction and the formation of adsorbed molecular layers. The intermolecular interaction strength is related to the rheological property of lubricant mixtures, while the formation of adsorbed molecular layers affects the passivating efficiency of the interactions between opposite surfaces. Compared with 12-PD, the hydroxyl groups of 13-PD are more exposed for intermolecular interaction. This paper could help provide a guideline to the design of novel lubricants for superlubricating performance and push the development of liquid superlubricity for future engineering applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Holmberg, K., Erdemir, A.: The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribol. Int. 135, 389–396 (2019)

    Article  Google Scholar 

  2. Suh, N.P., Mosleh, M., Howard, P.S.: Control of friction. Wear 175, 151–158 (1994)

    Article  CAS  Google Scholar 

  3. Bhushan, B., Israelachvili, J.N., Landman, U.: Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374, 607–616 (1995)

    Article  CAS  Google Scholar 

  4. Popov, V.L., Gray, J.A.T.: Prandtl-Tomlinson model: History and applications in friction, plasticity, and nanotechnologies. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 92, 683–708 (2012)

    Article  Google Scholar 

  5. Weiss, M., Elmer, F.-J.: Dry friction in the Frenkel-Kontorova-Tomlinson model: dynamical properties. Zeitschrift für Physik B Condensed Matter 104, 55–69 (1997)

    Article  CAS  Google Scholar 

  6. Chen, Z., Khajeh, A., Martini, A., Kim, S.H.: origin of high friction at graphene step edges on graphite. ACS Appl. Mater. Interfaces. 13, 1895–1902 (2020)

    Article  Google Scholar 

  7. Tabor, D.: Friction—the present state of our understanding. J. Lubr. Technol. 103, 169–179 (1981)

    Article  CAS  Google Scholar 

  8. Hirano, M., Shinjo, K.: Atomistic locking and friction. Physica B 41, 11837–11851 (1990)

    CAS  Google Scholar 

  9. Hirano, M.: Superlubricity: a state of vanishing friction. Wear 254, 932–940 (2003)

    Article  CAS  Google Scholar 

  10. Hirano, M.: Atomistics of friction. Surf. Sci. Rep. 60, 159–201 (2006)

    Article  CAS  Google Scholar 

  11. Hirano, M.: Atomistics of superlubricity. Friction 2, 95–105 (2014)

    Article  CAS  Google Scholar 

  12. Zheng, Q., Liu, Z.: Experimental advances in superlubricity. Friction 2, 182–192 (2014)

    Article  Google Scholar 

  13. Wang, L.F., Ma, T.B., Hu, Y.Z., Zheng, Q., Wang, H., Luo, J.: Superlubricity of two-dimensional fluorographene/MoS2 heterostructure: a first-principles study. Nanotechnology 25, 385701 (2014)

    Article  Google Scholar 

  14. Vu, C.C., Zhang, S., Urbakh, M., Li, Q., He, Q.C., Zheng, Q.: Observation of normal-force-independent superlubricity in mesoscopic graphite contacts. Phys. Rev. B 94, 081405 (2016)

    Article  Google Scholar 

  15. Berman, D., Erdemir, A., Sumant, A.V.: Approaches for achieving superlubricity in two-dimensional materials. ACS Nano 12, 2122–2137 (2018)

    Article  CAS  Google Scholar 

  16. Hod, O., Meyer, E., Zheng, Q., Urbakh, M.: Structural superlubricity and ultralow friction across the length scales. Nature 563, 485–492 (2018)

    Article  CAS  Google Scholar 

  17. Martin, J.M., Erdemir, A.: Superlubricity: Friction’s vanishing act. Phys. Today 71, 40–46 (2018)

    Article  CAS  Google Scholar 

  18. Long, Y., Bouchet, M.B., Lubrecht, T., Onodera, T., Martin, J.M.: Superlubricity of glycerol by self-sustained chemical polishing. Sci. Rep. 9, 6286 (2019)

    Article  Google Scholar 

  19. Kuwahara, T., Romero, P.A., Makowski, S., Weihnacht, V., Moras, G., Moseler, M.: Mechano-chemical decomposition of organic friction modifiers with multiple reactive centres induces superlubricity of ta-C. Nat. Commun. 10, 151 (2019)

    Article  Google Scholar 

  20. Klein, J.: Hydration lubrication. Friction 1, 1–23 (2013)

    Article  CAS  Google Scholar 

  21. Ma, L., Gaisinskaya-Kipnis, A., Kampf, N., Klein, J.: Origins of hydration lubrication. Nature. Communications 6, 6060 (2015)

    CAS  Google Scholar 

  22. Chen, Z., Liu, Y., Zhang, S., Luo, J.: Controllable superlubricity of glycerol solution via environment humidity. Langmuir 29, 11924–11930 (2013)

    Article  CAS  Google Scholar 

  23. Ge, X., Li, J., Zhang, C., Liu, Y., Luo, J.: Superlubricity and antiwear properties of in situ-formed ionic liquids at ceramic interfaces induced by tribochemical reactions. ACS Appl. Mater. Interfaces. 11, 6568–6574 (2019)

    Article  CAS  Google Scholar 

  24. Ge, X., Li, J., Wang, H., Zhang, C., Liu, Y., Luo, J.: Macroscale superlubricity under extreme pressure enabled by the combination of graphene-oxide nanosheets with ionic liquid. Carbon 151, 76–83 (2019)

    Article  CAS  Google Scholar 

  25. Han, T., Yi, S., Zhang, C., Li, J., Chen, X., Luo, J., et al.: Superlubrication obtained with mixtures of hydrated ions and polyethylene glycol solutions in the mixed and hydrodynamic lubrication regimes. J. Colloid Interface Sci. 579, 479–488 (2020)

    Article  CAS  Google Scholar 

  26. Ge, X., Li, J., Luo, J.: Macroscale superlubricity achieved with various liquid molecules: a review. Front. Mech. Eng. 5, 2 (2019)

    Article  Google Scholar 

  27. Zhai, W., Zhou, K.: Nanomaterials in superlubricity. Adv. Func. Mater. 29, 1806395 (2019)

    Article  Google Scholar 

  28. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  CAS  Google Scholar 

  29. Rahaman, O., van Duin, A.C.T., Goddard, W.A., Doren, D.J.: Development of a ReaxFF reactive force field for glycine and application to solvent effect and tautomerization. J. Phys. Chem. B 115, 249–261 (2011)

    Article  CAS  Google Scholar 

  30. Aryanpour, M., van Duin, A.C.T., Kubicki, J.D.: Development of a reactive force field for iron−oxyhydroxide systems. J. Phys. Chem. A 114, 6298–6307 (2010)

    Article  CAS  Google Scholar 

  31. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simulat. Mater. Sci. Eng. 18, 015012 (2009)

    Article  Google Scholar 

  32. Martínez, L., Andrade, R., Birgin, E.G., Martínez, J.M.: PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009)

    Article  Google Scholar 

  33. Zhang, X., Nguyen, H., Daly, M., Nguyen, S.T., Espinosa, H.D.: Nanoscale toughening of ultrathin graphene oxide-polymer composites: mechanochemical insights into hydrogen-bonding/van der Waals interactions, polymer chain alignment, and steric parameters. Nanoscale 11, 12305–12316 (2019)

    Article  CAS  Google Scholar 

  34. He, Y., Zolper, T.J., Liu, P., Zhao, Y., He, X., Shen, X., et al.: Elastohydrodynamic lubrication properties and friction behaviors of several ester base stocks. Friction 3, 243–255 (2015)

    Article  CAS  Google Scholar 

  35. Chapter 7 - Elastohydrodynamic Lubrication. In: Stachowiak GW, Batchelor AW (eds.) Engineering Tribology (Fourth Edition), pp. 293–370. Butterworth-Heinemann, Place Butterworth-Heinemann (2014)

  36. Habchi, W., Matta, C., Joly-Pottuz, L., De Barros, M.I., Martin, J.M., Vergne, P.: Full Film, boundary lubrication and tribochemistry in steel circular contacts lubricated with glycerol. Tribol. Lett. 42, 351–358 (2011)

    Article  CAS  Google Scholar 

  37. Björling, M., Shi, Y.: DLC and glycerol: superlubricity in rolling/sliding elastohydrodynamic lubrication. Tribol. Lett. 67, 23 (2019)

    Article  Google Scholar 

  38. Haufa, K.Z., Czarnecki, M.A.: Effect of temperature and water content on the structure of 1,2-propanediol and 1,3-propanediol: Near-infrared spectroscopic study. Vib. Spectrosc. 51, 80–85 (2009)

    Article  CAS  Google Scholar 

  39. Kijevčanin, M.L., Živković, E.M., Djordjević, B.D., Radović, I.R., Jovanović, J., Šerbanović, S.P.: Experimental determination and modeling of excess molar volumes, viscosities and refractive indices of the binary systems (pyridine+1-propanol, +1,2-propanediol, +1,3-propanediol, and +glycerol). New UNIFAC-VISCO parameters determination. J. Chem. Thermodynam. 56, 49–56 (2013)

    Article  Google Scholar 

  40. Das, P., Das, P.K., Arunan, E.: Conformational stability and intramolecular hydrogen bonding in 1,2-ethanediol and 1,4-butanediol. J Phys Chem A 119, 3710–3720 (2015)

    Article  CAS  Google Scholar 

  41. Arce, A., Marchiaro, A., Soto, A.: Propanediols for separation of citrus oil: liquid–liquid equilibria of limonene + linalool + (1,2-propanediol or 1,3-propanediol). Fluid Phase Equilib. 211, 129–140 (2003)

    Article  CAS  Google Scholar 

  42. Klein, R.A.: Hydrogen bonding in strained cyclic vicinal diols: The birth of the hydrogen bond. Chem. Phys. Lett. 429, 633–637 (2006)

    Article  CAS  Google Scholar 

  43. Li, J., Zhang, C., Deng, M., Luo, J.: Investigation of the difference in liquid superlubricity between water- and oil-based lubricants. RSC Adv. 5, 63827–63833 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Qiang Ma would also like to acknowledge the scholarship support from China Scholarship Council (CSC, No. 201806280152). Qiang Ma would also like to acknowledge the help and support received at Northwestern University in the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangneng Dong.

Ethics declarations

Conflict of interest

The authors declare that there is no competing financial interest for this work.

Ethical approval

The authors declare that the manuscript is original, and has been submitted solely to this journal and is not published, in press, or submitted elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Estimation of Theoretical Lubricant Film Thickness Between Tribopairs

Hamrock-Dowson equation (shown in Eq. 1) is used to estimate the minimum theoretical lubricant film thickness formed between the tribopairs:

$$\frac{h}{{R^{\prime}}} = 2.69\left( {\frac{{U\eta_{o} }}{{E^{\prime}R^{\prime}}}} \right)^{0.67} \left( {\alpha^{ * } E^{\prime}} \right)^{0.53} \left( {\frac{F}{{E^{\prime}R^{\prime}}}} \right)^{ - 0.067} \left( {1 - 0.61e^{ - 0.74k} } \right)$$
(1)

where R' refers to the reduced radius of tribopairs, U is the entrainment velocity of two sliding surfaces, η0 is the dynamic viscosity of lubricant used, E' the effective modulus of tribomaterials, F the applied normal load, α* the pressure-viscosity index of lubricant, and k the ellipticity parameter (= 1 in this case). α* is reported to be 6 GPa−1 for glycerol, and 5 GPa−1 for propanediol [43]. The α* for prepared diol/glycerol mixtures is estimated by formula α* = α1* f1 + α1* f2, where α1* and α2* refer to the respective pressure-viscosity index of pure glycerol and diol, and f1 and f2 are their corresponding weight concentrations. Lambda ratio λ is calculated by Eq. (2):

$$\lambda = \frac{h}{{\sqrt {\sigma_{1}^{2} + \sigma_{2}^{2} } }}$$
(2)

where σ1 and σ2 refer to the surface roughness of the counter surfaces.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Wang, W. & Dong, G. Achieving Macroscale Liquid Superlubricity Using Lubricant Mixtures of Glycerol and Propanediol. Tribol Lett 69, 159 (2021). https://doi.org/10.1007/s11249-021-01519-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01519-6

Keywords

Navigation