Skip to main content

Active Control of Boundary Lubrication of Ceramic Tribo-Pairs in Sodium Dodecyl Sulfate Aqueous Solutions


The objective of the study is to actively control friction between engineering ceramics in underwater applications. By designing a proper electrode system and applying an external electric field, the active control of friction between Al2O3 plate and ZrO2 ball in sodium dodecyl sulfate (SDS) aqueous solutions has been realized, which is different from the previous studies of potential-controlled boundary lubrication where at least one part of tribo-pairs is a conductor. Reversible change of friction coefficient has been observed in the range from 0.12 to 0.35. An indirect electric field-assisted adsorption/desorption model has been proposed to explain the observed phenomena. The addition of inorganic salts containing counterions to the SDS solution or increasing the concentration of SDS can shorten the response time of friction to the variation of the applied electric field by facilitating the formation of SDS micelles. This opens a new way to realize the active control of friction for insulative tribo-pairs without corrosion.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Sliney, H.E., DellaCorte, C.: The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact. STLE-ASME, New Orleans (1993)

    Google Scholar 

  2. 2.

    Gahr, K.H.Z.: Sliding wear of ceramic-ceramic, ceramic-steel and steel-steel pairs in lubricated and unlubricated contact. Wear 133, 1 (1989)

    Article  Google Scholar 

  3. 3.

    Bartelt, G.: Sliding friction and wear of ceramic/ceramic couples lubricated with hexadecane. Tribol. Ser. 30, 635 (1995)

    CAS  Article  Google Scholar 

  4. 4.

    Aronov, V., Mesyef, T.: Wear in ceramic/ceramic and ceramic/metal reciprocating sliding contact. Part 1. J. Tribol. 108, 16 (1986)

    Article  Google Scholar 

  5. 5.

    Bernhardt, J., Albers, A., Ott, S.: Advanced ceramics as friction material in lubricated clutch systems. Tribol. Int. 59, 267 (2013)

    CAS  Article  Google Scholar 

  6. 6.

    Yamamoto, T., Ito, H., Niizeki, S., Matsunaga, S.: Rolling life properties of ceramic bearings in water. Key Eng. Mater. 317–318, 359 (2006)

    Article  Google Scholar 

  7. 7.

    Amutha Rani, D., Yoshizawa, Y., Hyuga, H., Hirao, K., Yamauchi, Y.: Tribological behavior of ceramic materials (Si3N4, SiC and Al2O3) in aqueous medium. J. Eur. Ceram. Soc. 24, 3279 (2004)

    CAS  Article  Google Scholar 

  8. 8.

    Roldo, L., Komar, I., Vulić, N.: Design and materials selection for environmentally friendly ship propulsion system. Strojniški vestnik—J. Mech. Eng. 59, 25 (2013)

    Article  Google Scholar 

  9. 9.

    Nunes, D.G., Da Silva, A.D.P.M., Cajaiba, J., Pérez-Gramatges, A., Lachter, E.R., Nascimento, R.S.V.: Influence of glycerides-xanthan gum synergy on their performance as lubricants for water-based drilling fluids. J. Appl. Polym. Sci. (2014).

    Article  Google Scholar 

  10. 10.

    Zhang, J., Meng, Y.: Stick-slip friction of stainless steel in sodium dodecyl sulfate aqueous solution in the boundary lubrication regime. Tribol. Lett. 56, 543 (2014)

    CAS  Article  Google Scholar 

  11. 11.

    Peng, Y., Hu, Y., Wang, H.: Tribological behaviors of surfactant-functionalized carbon nanotubes as lubricant additive in water. Tribol. Lett. 25, 247 (2007)

    CAS  Article  Google Scholar 

  12. 12.

    Jia, W., Tian, J., Bai, P., Li, S., Zeng, H., Zhang, W., Tian, Y.: A novel comb-typed poly(oligo(ethylene glycol) methylether acrylate) as an excellent aqueous lubricant. J. Colloid Interface Sci. 539, 342 (2019)

    CAS  Article  Google Scholar 

  13. 13.

    Li, J., Zhang, C., Deng, M., Luo, J.: Investigations of the superlubricity of sapphire against ruby under phosphoric acid lubrication. Friction 2, 164 (2014)

    CAS  Article  Google Scholar 

  14. 14.

    Han, T., Zhang, C., Chen, X., Li, J., Wang, W., Luo, J.: Contribution of a tribo-induced silica layer to macroscale superlubricity of hydrated ions. J. Phys. Chem. C 123, 20270 (2019)

    CAS  Article  Google Scholar 

  15. 15.

    Zhang, S., Zhang, C., Hu, Y., Ma, L.: Numerical simulation of mixed lubrication considering surface forces. Tribol. Int. 140, 105878 (2019)

    CAS  Article  Google Scholar 

  16. 16.

    Yonggang, M., Chenxu, L.: Spatiotemporal manipulation of boundary lubrication by electro-charging and electrochemical methods. In: Erdemir, A., Martin, J.M., Luo, J. (eds.) Superlubricity, 2nd edn., p. 499. Elsevier, Amsterdam (2021)

    Google Scholar 

  17. 17.

    Glavatskih, S., Höglund, E.: Tribotronics—towards active tribology. Tribol. Int. 41, 934 (2008)

    Article  Google Scholar 

  18. 18.

    Zhu, Y.Y., Kelsall, G.H., Spikes, H.A.: The influence of electrochemical potentials on the friction and wear of iron and iron oxides in aqueous systems. Tribol. Trans. 37, 811 (1994)

    CAS  Article  Google Scholar 

  19. 19.

    He, S., Meng, Y., Tian, Y., Zuo, Y.: Response characteristics of the potential-controlled friction of ZrO2/stainless steel tribopairs in sodium dodecyl sulfate aqueous solutions. Tribol. Lett. 38, 169 (2010)

    CAS  Article  Google Scholar 

  20. 20.

    Yang, X., Meng, Y., Tian, Y.: Effect of imidazolium ionic liquid additives on lubrication performance of propylene carbonate under different electrical potentials. Tribol. Lett. 56, 161 (2014)

    CAS  Article  Google Scholar 

  21. 21.

    Liu, C., Meng, Y., Tian, Y.: Potential-controlled boundary lubrication using MoS2 additives in diethyl succinate. Tribol. Lett. (2020).

    Article  Google Scholar 

  22. 22.

    Liu, C., Friedman, O., Meng, Y., Tian, Y., Golan, Y.: CuS nanoparticle additives for enhanced ester lubricant performance. ACS Appl. Nano Mater. 1, 7060 (2018)

    CAS  Article  Google Scholar 

  23. 23.

    Xu, X., Spikes, H.: Study of zinc dialkyldithiophosphate in di-ethylhexyl sebacate using electrochemical techniques. Tribol. Lett. 25, 141 (2007)

    CAS  Article  Google Scholar 

  24. 24.

    Tung, S.C., Wang, S.S.: In-situ electro-charging for friction reduction and wear resistant film formation. Tribol. Trans. 34, 479 (1991)

    CAS  Article  Google Scholar 

  25. 25.

    Cao, H., Meng, Y.: Electrochemical effect on boundary lubrication of ZDDP additive blended in propylene carbonate/diethyl succinate. Tribol. Int. 126, 229 (2018)

    CAS  Article  Google Scholar 

  26. 26.

    He, S., Meng, Y., Tian, Y.: Correlation between adsorption/desorption of surfactant and change in friction of stainless steel in aqueous solutions under different electrode potentials. Tribol. Lett. 41, 485 (2011)

    CAS  Article  Google Scholar 

  27. 27.

    Jiang, H., Meng, Y., Wen, S., Ji, H.: Effects of external electric fields on frictional behaviors of three kinds of ceramic/metal rubbing couples. Tribol. Int. 32, 161 (1999)

    Article  Google Scholar 

  28. 28.

    Chang, Q., Meng, Y., Wen, S.: Influence of interfacial potential on the tribological behavior of brass/silicon dioxide rubbing couple. Appl. Surf. Sci. 202, 120 (2002)

    CAS  Article  Google Scholar 

  29. 29.

    Liu, C., Tian, Y., Meng, Y.: A chemical potential equation for modeling triboelectrochemical reactions on solid-liquid interfaces. Front. Chem. (2021).

    Article  Google Scholar 

  30. 30.

    Spikes, H.A.: Triboelectrochemistry: influence of applied electrical potentials on friction and wear of lubricated contacts. Tribol. Lett. (2020).

    Article  Google Scholar 

  31. 31.

    Zhang, J., Meng, Y., Tian, Y., Zhang, X.: Effect of concentration and addition of ions on the adsorption of sodium dodecyl sulfate on stainless steel surface in aqueous solutions. Colloids Surf A 484, 408 (2015)

    CAS  Article  Google Scholar 

  32. 32.

    Thavorn, J., Hamon, J.J., Kitiyanan, B., Striolo, A., Grady, B.P.: Competitive surfactant adsorption of AOT and TWEEN 20 on gold measured using a quartz crystal microbalance with dissipation. Langmuir 30, 11031 (2014)

    CAS  Article  Google Scholar 

  33. 33.

    Reed, M.A., Zhou, C., Muller, C.J., Burgin, T.P., Tour, J.M.: Conductance of a molecular junction. Science 278, 252 (1997)

    CAS  Article  Google Scholar 

  34. 34.

    Angarska, J.K., Tachev, K.D., Denkov, N.D.: Composition of mixed adsorption layers and micelles in solutions of sodium dodecyl sulfate and dodecyl acid diethanol amide. Colloids Surf A 233, 193 (2004)

    CAS  Article  Google Scholar 

  35. 35.

    Guo, X., Wang, J.: Comparison of linearization methods for modeling the Langmuir adsorption isotherm. J. Mol. Liq. 296, 111850 (2019)

    CAS  Article  Google Scholar 

  36. 36.

    Zhang, R., Somasundaran, P.: Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv. Colloid Interface Sci. 123–126, 213 (2006)

    Article  Google Scholar 

  37. 37.

    Danov, K.D., Kralchevsky, P.A.: The standard free energy of surfactant adsorption at air/water and oil/water interfaces: theoretical vs empirical approaches. Colloid J. 74, 172 (2012)

    CAS  Article  Google Scholar 

  38. 38.

    Piontek, S.M., Tuladhar, A., Marshall, T., Borguet, E.: Monovalent and divalent cations at the α-Al2O3(0001)/water interface: how cation identity affects interfacial ordering and vibrational dynamics. J. Phys. Chem. C. 123, 18315 (2019)

    CAS  Article  Google Scholar 

  39. 39.

    Cai, Q., Lopez-Ruiz, J.A., Cooper, A.R., Wang, J., Albrecht, K.O., Mei, D.: Aqueous-phase acetic acid Ketonization over monoclinic zirconia. ACS Catal. 8, 488 (2017)

    Article  Google Scholar 

  40. 40.

    Myers, D.: Surfaces, interfaces, and colloids: principles and applications, 2nd edn. Wiley-VCH, Weinheim (1999)

    Book  Google Scholar 

  41. 41.

    Kojima, T.: Combined reflectometric interference spectroscopy and quartz crystal microbalance detect differential adsorption of lipid vesicles with different phase transition temperatures on SiO2, TiO2, and Au surfaces. Anal. Chem. 89, 13596 (2017)

    CAS  Article  Google Scholar 

  42. 42.

    Kleinschmidt, J.H.: Lipid-protein interactions. Humana Press, Totowa (2003)

    Google Scholar 

Download references


This work has been financially supported by the National Natural Science Foundation of China (Grant No. 51961145303), the Chinese National Key R&D Plan (Grant No. 2016YFE0130300), and the China Postdoctoral Science Foundation (Grant No. 2021TQ0175).

Author information



Corresponding author

Correspondence to Yonggang Meng.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Fang, J., Wen, X. et al. Active Control of Boundary Lubrication of Ceramic Tribo-Pairs in Sodium Dodecyl Sulfate Aqueous Solutions. Tribol Lett 69, 144 (2021).

Download citation


  • Water-based lubrication
  • Surfactant
  • Ceramic friction pairs
  • Boundary lubrication
  • Potential-control