Skip to main content

Characterization and Tribological Performance of Polyethersulfone/PTFE Compound Filled with Na-Montmorillonite

Abstract

Lamellar sodium-montmorillonite (NaMMT)

was used as reinforcing filler to improve the abrasion resistance of polyethersulfone (PES)/polytetrafluoroethylene (PTFE)-based polymers. As filler, the interlayer distance of NaMMT was decreased from 1.523 to 0.995 nm, resulting from the evaporation of interlayer water during the heat treating of composites. The abrasion resistance of PES/PTFE-based composite was effectively improved by introducing NaMMT, attributing to the load bearing of NaMMT on the worn surface. The polymer sample with 20 wt% NaMMT exhibited the best anti-wear performance, which is ascribed to its densification worn morphology. In addition, unlike the pure PTFE transfer films formed for the PTFE and PES/PTFE compounds, NaMMT is also involved in the PTFE transfer film of NaMMT/PES/PTFE compounds. It is inferred that the self-lubricating property of PTFE transfer film is destroyed because of the introduction of NaMMT, leading to that the friction coefficient of NaMMT/PES/PTFE compounds was a little larger than those of PTFE and PES/PTFE compounds.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Data Availability

All data generated or analyzed during this study are included in the manuscript.

References

  1. 1.

    Mubashshir, M., Shaukat, A.: The role of grease composition and rheology in elastohydrodynamic lubrication. Tribol. Lett. 67, 104 (2019)

    Article  CAS  Google Scholar 

  2. 2.

    Kazemi-Khasragh, E., Bahari-Sambran, F., Platzer, C., Eslami-Farsani, R.: The synergistic effect of graphene nanoplatelets–montmorillonite hybrid system on tribological behavior of epoxy-based nanocomposites. Tribol. Int. 151, 106472 (2020)

    CAS  Article  Google Scholar 

  3. 3.

    Mohammed, A.S., Ali, A.B.: Investigating the effect of water uptake on the tribological properties of organoclay reinforced uhmwpe nanocomposites. Tribol. Lett. 62, 2 (2016)

    Article  CAS  Google Scholar 

  4. 4.

    Xiao, H., Liu, S., Wang, D.: Tribological properties of sliding shale rock–alumina contact in hydraulic fracturing. Tribol. Lett. 62, 20 (2016)

    Article  CAS  Google Scholar 

  5. 5.

    Lin, Y., Qin, J., Chen, R., Lu, F., Lu, L.: Time-resolved dynamic friction testing of a polyurethane foam against a polymer/clay nano-composite under impact loading. Tribol. Lett. 56, 37–45 (2014)

    Article  Google Scholar 

  6. 6.

    Esteves, M., Ramalho, A., Ferreira, J.A.M., Nobre, J.P.: Tribological and mechanical behaviour of epoxy/nanoclay composites. Tribol. Lett. 52, 1–10 (2013)

    CAS  Article  Google Scholar 

  7. 7.

    Hu, H., Huang, Z., Chen, Y., Wang, C., Yu, S.: Tribological behavior of polyamide 66-based binary and ternary nanocomposites. Tribol. Lett. 48, 263–269 (2012)

    CAS  Article  Google Scholar 

  8. 8.

    Guo, F., Zhang, Z., Zhang, H., Liu, W.: Tribological behavior of Kevlar fabric composites filled with nanoparticles. J. Appl. Polym. Sci. 111, 2419–2425 (2010)

    Article  CAS  Google Scholar 

  9. 9.

    Mu, B., Wang, Q., Wang, T., Wang, H., Pei, X.: Preparation and friction properties of PBT/MMT composites. Polym. Compos. 30, 619–628 (2010)

    Article  CAS  Google Scholar 

  10. 10.

    Sirong, Y., Zhongzhen, Y., Yiu-Wing, M.: Effects of SEBS-g-MA on tribological behaviour of nylon 66/organoclay nanocomposites. Tribol. Int. 40, 855–862 (2007)

    Article  CAS  Google Scholar 

  11. 11.

    Ali, A.B., Samad, M.A., Merah, N.: UHMWPE hybrid nanocomposites for improved tribological performance under dry and water-lubricated sliding conditions. Tribol. Lett. 65, 102 (2017)

    Article  CAS  Google Scholar 

  12. 12.

    Azam, M.U., Samad, M.A.: A novel organoclay reinforced UHMWPE nanocomposite coating for tribological applications. Prog. Org. Coat. 118, 97–107 (2018)

    CAS  Article  Google Scholar 

  13. 13.

    Wen, J., Yin, P., Zhen, M.: Friction and wear properties of UHMWPE/nano-MMT composites under oilfield sewage condition. Mater. Lett. 62, 4161–4163 (2008)

    CAS  Article  Google Scholar 

  14. 14.

    Zhen, M., Wen, J., Li, Y., Yu, N.: Friction and wear properties of PTFE and UHMWPE filled with nano-MMT. J. Mater. Sci. Eng. 24, 410–413 (2006)

    CAS  Google Scholar 

  15. 15.

    Zhang, X., Wang, H., Liu, Z., Zhu, Y., Wu, S., Wang, C., Zhu, Y.: Fabrication of durable fluorine-free superhydrophobic polyethersulfone (PES) composite coating enhanced by assembled MMT-SiO2 nanoparticles. Appl. Surf. Sci. 396, 1580–1588 (2017)

    CAS  Article  Google Scholar 

  16. 16.

    Brostow, W.: Nanocomposites of poly(methyl methacrylate) (PMMA) and montmorillonite (MMT) Brazilian clay: a tribological study. Express Polym. Lett. 4, 570–575 (2010)

    CAS  Article  Google Scholar 

  17. 17.

    Kanny, K., Jawahar, P., Moodley, V.K.: Mechanical and tribological behavior of clay-polypropylene nanocomposites. J. Mater. Sci. 43, 7230–7238 (2008)

    CAS  Article  Google Scholar 

  18. 18.

    Bhuyan, S., Sundararajan, S., Lu, Y., Larock, R.: A study of the physical and tribological properties of biobased polymer-clay nanocomposites at different clay concentrations. Wear 268, 797–802 (2010)

    CAS  Article  Google Scholar 

  19. 19.

    Lam, C.K., Lau, K.T.: Tribological behavior of nanoclay/epoxy composites. Mater. Lett. 61, 3863–3866 (2007)

    CAS  Article  Google Scholar 

  20. 20.

    Mohan, T.P., Kanny, K.: Tribological properties of nanoclay infused banana fiber (NC-BF) reinforced epoxy composites. J. Tribol. 141, 1 (2019)

    Article  CAS  Google Scholar 

  21. 21.

    Kazemi-Khasragh, E., Bahari-Sambran, F., Platzer, C., Eslami-Farsani, R.: The synergistic effect of graphene nanoplatelets-montmorillonite hybrid system on tribological behavior of epoxy-based nanocomposites. Ttribol. Int. 151, 106472 (2020)

    CAS  Article  Google Scholar 

  22. 22.

    Ha, S.R., Rhee, K.Y., Shin, H.: Effect of MMT concentration on tribological behavior of MMT/epoxy nanocomposite. J. Nanosci. Nanotechnol. 8, 4869 (2008)

    CAS  Article  Google Scholar 

  23. 23.

    Yi, H., Hu, M., Yao, D., Wei, T., Lin, H., Zheng, B.: Organic/inorganic hybrid nanostructured composites of liquid nitrile rubber-based quaternary ammonium salt-modified montmorillonite and epoxy resin: preparation and tribological behaviors. Polym. Compos. 41, 1711–1720 (2020)

    CAS  Article  Google Scholar 

  24. 24.

    Lingaraju, D., Ramji, K., Devi, M.P., Lakshmi, U.R.: Mechanical and tribological studies of polymer hybrid nanocomposites with nano reinforcements. Bull. Mater. Sci. 34, 705 (2011)

    CAS  Article  Google Scholar 

  25. 25.

    Kumar, M.S.S., Raju, N.M.S., Sampath, P.S., Vivek, U.: Tribological analysis of nano clay/epoxy/glass fiber by using Taguchi’s technique. Mater. Des. 70, 1–9 (2015)

    Article  CAS  Google Scholar 

  26. 26.

    Mohan, T.P., Kanny, K.: Tribological studies of nanoclay filled epoxy hybrid laminates. Tribol. Trans. 60, 681–692 (2017)

    CAS  Article  Google Scholar 

  27. 27.

    Yi, H., Hu, M., Yao, D., Lin, H., Zheng, B.: Tribological and thermomechanical properties of epoxy-matrix nanocomposites containing montmorillonite nanoclay intercalated with polybutadiene-based quaternary ammonium salt. Plast. Rubber Compos. 49, 389–399 (2020)

    CAS  Article  Google Scholar 

  28. 28.

    Zhang, G., Ke, Y., He, J., Qin, M., Shen, H., Lu, S., Xu, J.: Effects of organo-modified montmorillonite on the tribology performance of bismaleimide-based nanocomposites. Mater. Des. 86, 138–145 (2015)

    CAS  Article  Google Scholar 

  29. 29.

    Nie, H.W., Zhou, Y.K., Yang, L., Cao, Y.: Influence on friction material performance of nano-MMT composites of PF by in situ method. Key Eng. Mater. 609, 8–13 (2014)

    Article  Google Scholar 

  30. 30.

    Fan, B., Yang, Y., Feng, C., Ma, J., Tang, Y., Dong, Y.: Tribological properties of fabric self-lubricating liner based on organic montmorillonite (OMMT) reinforced phenolic (PF) nanocomposites as hybrid matrices. Tribol. Lett. 57, 22 (2015)

    Article  CAS  Google Scholar 

  31. 31.

    Wang, Z., Xia, Y., Liu, Z.: Study the sensitivity of solid lubricating additives to attapulgite clay base grease. Tribol. Lett. 42, 141–148 (2011)

    Article  CAS  Google Scholar 

  32. 32.

    Cao, Y., Yang, T., Zhang, D., Wang, Q., Guo, X.: Friction mechanism of nano-MMT/In composite on steel ball higher pair. Chem. Eng. Trans. 46, 1177–1182 (2015)

    Google Scholar 

  33. 33.

    Cao, Y., Yang, T., Zhang, D., Wang, Q., Guo, X.: Tribological properties of nano-MMT/In lubricant additive on steel-bronze tribo-pair. Chem. Eng. Trans. 46, 1171–1176 (2015)

    Google Scholar 

  34. 34.

    Nie, H., Zhou, Y., Yang, L., Zhu, W.: A Study on the preparation of montmorillonite/Cu nanocomposite and their tribological performance. Lubr. Eng. 39, 38–42 (2014)

    CAS  Google Scholar 

  35. 35.

    Yu, C., Ke, Y., Hu, X., Zhao, Y., Deng, Q., Lu, S.: Effect of bifunctional montmorillonite on the thermal and tribological properties of polystyrene/montmorillonite nanocomposites. Polymers-Basel 11, 834 (2019)

    Article  CAS  Google Scholar 

  36. 36.

    Pena-Paras, L., Maldonado-Cortes, D., Castillo, F., Leal, J., Garza, S.: Application of nanoclay lubricants for lowering wear of tools for steel meshing—a case study. IOP Conf. Ser. Mater. Sci. Eng. 400, 072004 (2018)

    Article  Google Scholar 

  37. 37.

    Cao, Z., Xia, Y., Xi, X.: Nano-montmorillonite-doped lubricating grease exhibiting excellent insulating and tribological properties. Friction 5, 219–230 (2017)

    CAS  Article  Google Scholar 

  38. 38.

    Sun, W., Liu, X., Liu, K., Xu, J., Ye, J.: Paradoxical filler size effect on composite wear: filler–matrix interaction and its tribochemical consequences. Tribol. Lett. 68, 131 (2020)

    Article  Google Scholar 

  39. 39.

    Liang, L., Song, L., Yang, Y., Li, F., Ma, Y.: Tribological properties of polytetrafluoroethylene improved by incorporation of fluorinated graphene with various fluorine/carbon ratios under dry sliding condition. Tribol. Lett. 69, 21 (2021)

    CAS  Article  Google Scholar 

  40. 40.

    Waßmann, O., Ahmed, I.U.: Slippery wood: low friction and low wear of modified beech wood. Tribol. Lett. 68, 53 (2020)

    Article  Google Scholar 

  41. 41.

    Alam, K.I., Dorazio, A., Burris, D.L.: Polymers tribology exposed: eliminating transfer film effects to clarify ultralow wear of PTFE. Tribol. Lett. 68, 67 (2020)

    CAS  Article  Google Scholar 

  42. 42.

    Zhang, H., Chang, Q.: Fluorine-doped amorphous carbon-coated magnesium silicate hydroxide as lubricant additive and atomic simulation. Tribol. Lett. 69, 11 (2021)

    Article  CAS  Google Scholar 

  43. 43.

    Jiang, Y., Chen, L., Xiao, C., Zhou, N., Qian, L.: Friction and wear behaviors of steel ball against polyimide-ptfe composite under rolling-sliding motion. Tribol. Lett. 69, 100 (2021)

    Article  Google Scholar 

  44. 44.

    Chen, Z., Wu, Z., Sun, J., Mao, C., Su, F.: Improved load-bearing capacity and tribological properties of PTFE coatings induced by surface texturing and the addition of Go. Tribol. Lett. 69, 47 (2021)

    CAS  Article  Google Scholar 

  45. 45.

    Zuo, Z., Song, L., Yang, Y.: Tribological behavior of polyethersulfone-reinforced polytetrafluoroethylene composite under dry sliding condition. Tribol. Int. 86, 17–27 (2015)

    CAS  Article  Google Scholar 

  46. 46.

    Zuo, Z., Song, L., Yang, Y.: Miscibility analysis of polyethersulfone and polytetrafluoroethylene using the molecular dynamics method. Fiber. Polym. 16, 510–521 (2015)

    CAS  Article  Google Scholar 

  47. 47.

    Zuo, Z., Yang, Y., Qi, X., Su, W., Yang, X.: Analysis of the chemical composition of the PTFE transfer film produced by sliding against Q235 carbon steel. Wear 320, 87–93 (2014)

    CAS  Article  Google Scholar 

  48. 48.

    Chen, Z., Feng, R.: Preparation and characterization of poly(styrene-b-butadiene-b-styrene)/montmorillonite nanocomposites. Polym. Compos. 30, 281–287 (2009)

    Article  CAS  Google Scholar 

  49. 49.

    Katti, K.S., Sikdar, D., Katti, D.R., Ghosh, P., Verma, D.: Molecular interactions in intercalated organically modified clay and clay-polycaprolactam nanocomposites: experiments and modeling. Polymers-Basel 47, 403–414 (2006)

    CAS  Google Scholar 

  50. 50.

    Zhang, X., Loo, L.: Variable-temperature Fourier transform infrared studies of matrix-nanofiller interactions in amorphous polyamide/layered silicate nanocomposites. J. Appl. Polym. Sci. 126, E371–E379 (2012)

    CAS  Article  Google Scholar 

  51. 51.

    Moraes, R.P., Valera, T.S., Demarquette, N.R., Oliveira, P.C., Maria, C.P., Santos, A.M.: Influence of granulometry and organic treatment of a Brazilian montmorillonite on the properties of poly(styrene-co-n-butyl acrylate)/layered silicate nanocomposites prepared by miniemulsion polymerization. J. Appl. Polym. Sci. 112, 1949–1958 (2009)

    CAS  Article  Google Scholar 

  52. 52.

    Al-Othman, A., Tremblay, A.Y., Pell, W., Letaief, S., Liu, Y., Peppley, B.A., Ternan, M.: A modified silicic acid (Si) and sulphuric acid (S)-ZrP/PTFE/glycerol composite membrane for high temperature direct hydrocarbon fuel cells. J. Power. Sour. 224, 158–167 (2013)

    CAS  Article  Google Scholar 

  53. 53.

    Gohari, R.J., Halakoo, E., Nazri, N., Lau, W.J., Matsuura, T., Ismail, A.F.: Improving performance and antifouling capability of PES UF membranes via blending with highly hydrophilic hydrous manganese dioxide nanoparticles. Desalination 335, 87–95 (2014)

    Article  CAS  Google Scholar 

  54. 54.

    Saxena, N., Prabhavathy, C., De, S., Dasgupta, S.: Flux enhancement by argon–oxygen plasma treatment of polyethersulfone membranes. Sep. Purif. Technol. 70, 160–165 (2010)

    Article  CAS  Google Scholar 

  55. 55.

    Zuo, Z., Jin, X., Li, C., Zhang, Z., Yang, Y.: Chemisorption mechanism of defluorinated fluorine on bcc Fe surface during formation of PTFE transfer film. Appl. Surf. Sci. 567, 150777 (2021)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was funded by China Postdoctoral Science Foundation (Grant No. 2020M670152).

Funding

This study was funded by China Postdoctoral Science Foundation (Grant No. 2020M670152).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xin Jin.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zuo, Z., Yang, Y., Song, L. et al. Characterization and Tribological Performance of Polyethersulfone/PTFE Compound Filled with Na-Montmorillonite. Tribol Lett 69, 138 (2021). https://doi.org/10.1007/s11249-021-01513-y

Download citation

Keywords

  • Solid lubrication friction
  • Polymers
  • PTFE
  • Wear-resistant
  • Self-lubricating composites