Skip to main content

Particle Erosion Performance of Additive Manufactured 316L Stainless Steel Materials


Many critical parts such as surface parts of high-speed trains, bins and hoppers, and pipes, bends and valves in material transportation applications as well as a helicopter, mixer, and turbine blades, which can be exposed to particle wear due to the application environment, can be easily manufactured today due to the advances in 3D printing technology. For this reason, an experimental study was carried out to determine the particle erosion behavior of 316L stainless steel parts built by the laser melting method, which is one of the 3D printing technologies. The rectangular plate samples produced with various laser manufacturing parameters were subjected to particle erosion tests at different impingement angles in accordance with the ASTM G76 standard at 140 m/s impact speed. The results showed that the erosion behavior develops in a characteristic similar to the wrought sample, and laser parameters play an efficient role. For example, the porosity ratio decreases at low scanning speeds, resulting in significant improvements in erosion behavior. Also, it was found that the particle erosion behavior of the 3D printed parts could be improved in a serious amount by applying a heat treatment process. Consequently, the obtained results in this study promotes the more comprehensive works regarding the optimization of several laser manufacturing parameters such as scan speed, build direction, laser power, hatch spacing, layer thickness, scan strategy and laser exposure time to obtain the best particle erosion behavior and determination of the most suitable materials among the several others which can be used in 3D printing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    Zhu, Y., Zou, J., Yang, H.: Wear performance of metal parts fabricated by selective laser melting: A literature review. J. Zhejiang Univ. Sci. A. 19(2), 95–110 (2018).

    CAS  Article  Google Scholar 

  2. 2.

    Yerramareddy, S., Bahadur, S.: Effect of operational variables, microstructure and mechanical properties on the erosion of Ti-6Al-4V. Wear 142, 253–263 (1991).

    CAS  Article  Google Scholar 

  3. 3.

    Okonkwo, P.C., Mohamed, A.M.A., Ahmed, E.: Influence of particle velocities and impact angles on the erosion mechanisms of AISI 1018 steel. Adv. Mater. Lett. 6(7), 653–659 (2015).

    Article  Google Scholar 

  4. 4.

    Akbarzadeh, E., Elsaadawy, E., Sherik, A.M., Spelt, J.K., Papini, M.: The solid particle erosion of 12 metals using magnetite erodent. Wear 282, 40–51 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    Liu, R., Yao, J.H., Zhang, Q.L., Yao, M.X., Collier, R.: Sliding wear and solid-particle erosion resistance of a novel high-tungsten Stellite alloy. Wear 322, 41–50 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Yan, C., Chen, W., Zhao, Z.: Experimental study on the high-speed impact of a sand particle on Ti–6Al–4V. Proc. IMechE J. 234(4), 632–646 (2019).

    CAS  Article  Google Scholar 

  7. 7.

    Patnaik, A., Satapathy, A., Chand, N., Barkoula, N.M.: Solid particle erosion wear characteristics of fiber and particulate filled polymer composites: a review. Wear 268(1–2), 249–263 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    Miyazaki, N.: Solid particle erosion of composite materials: a critical review. J. Compos. Mater. 50(23), 3175–3217 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Öztürk, B., Gedikli, H., Kılıçarslan, Y.S.: Erosive wear characteristics of E-glass fiber reinforced silica fume and zinc oxide-filled epoxy resin composites. Polym. Compos. 41(1), 326–337 (2020).

    CAS  Article  Google Scholar 

  10. 10.

    Cernuschi, F., Guardamagna, C., Capelli, S., Lorenzoni, L., Mack, D.E., Moscatelli, A.: Solid particle erosion of standard and advanced thermal barrier coatings. Wear 348, 43–51 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Peat, T., Galloway, A., Toumpis, A., Harvey, D., Yang, W.H.: Performance evaluation of HVOF deposited cermet coatings under dry and slurry erosion. Surf. Coat. Technol. 300, 118–127 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Zhang, P., Li, F., Zhang, X., Zhang, Z., Tan, C., Ren, L., et al.: Effect of bionic unit shapes on solid particle erosion resistance of ZrO2–7wt%Y2O3 thermal barrier coatings processed by laser. J. Bionic Eng. 15(3), 545–557 (2018).

    Article  Google Scholar 

  13. 13.

    Kaplan, M., Uyaner, M., Avcu, E., Avcu, Y.Y., Karaoglanli, A.C.: Solid particle erosion behavior of thermal barrier coatings produced by atmospheric plasma spray technique. Mech. Adv. Mater. Struc. 26(19), 1606–1612 (2019).

    CAS  Article  Google Scholar 

  14. 14.

    Arjula, S., Harsha, A.P.: Study of erosion efficiency of polymers and polymer composites. Polym. Test. 25(2), 188–196 (2006).

    CAS  Article  Google Scholar 

  15. 15.

    Islam, M.A., Farhat, Z.N.: Effect of impact angle and velocity on erosion of API X42 pipeline steel under high abrasive feed rate. Wear 311(1–2), 180–190 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Oka, Y.I., Ohnogi, H., Hosokawa, T., Matsumura, M.: The impact angle dependence of erosion damage caused by solid particle impact. Wear 203, 573–579 (1997).

    Article  Google Scholar 

  17. 17.

    Rattan, R., Jayashree, B.: Influence of impingement angle on solid particle erosion of carbon fabric reinforced polyetherimide composite. Wear 262(5–6), 568–574 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    Ediriweera, M., Chladek, J., Ratnayake, C.: Effect of impact angle, exposure time, and particle size on impact erosion. Particul. Sci. Technol. (2019).

    Article  Google Scholar 

  19. 19.

    Shipway, P.H., Hutchings, I.M.: A method for optimizing the particle flux in erosion testing with a gas-blast apparatus. Wear 174(1–2), 169–175 (1994).

    Article  Google Scholar 

  20. 20.

    Sundararajan, G., Roy, M.: Solid particle erosion behaviour of metallic materials at room and elevated temperatures. Tribol Int. 30(5), 339–359 (1997).

    CAS  Article  Google Scholar 

  21. 21.

    McKeen, L.W.: The effect of temperature and other factors on plastics and elastomers, 3rd edn. William Andrew, Waltham (2014)

    Google Scholar 

  22. 22.

    Finnie, I.: Some reflections on the past and future of erosion. Wear 186, 1–10 (1995).

    Article  Google Scholar 

  23. 23.

    Tilly, G.P.: A two stage mechanism of ductile erosion. Wear 23(1), 87–96 (1973).

    Article  Google Scholar 

  24. 24.

    Kishore, A., Sridhar, G.B.: On evaluating erosion by sand particles in polythene system without and with ceramic particles. Polym. Test. 21(4), 473–477 (2002).

    CAS  Article  Google Scholar 

  25. 25.

    Patnaik, A., Satapathy, A., Mahapatra, S.S., Dash, R.R.: A modeling approach for prediction of erosion behavior of glass fiber–polyester composites. J. Polym. Res. 15(2), 147–160 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    Patnaik, A., Satapathy, A., Mahapatra, S.S., Dash, R.R.: Tribo-performance of polyester hybrid composites: damage assessment and parameter optimization using Taguchi design. Mater Design. 30(1), 57–67 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    Hadavi, V., Moreno, C.E., Marcello, P.: Numerical and experimental analysis of particle fracture during solid particle erosion, part II: effect of incident angle, velocity and abrasive size. Wear 356, 146–157 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Leguizamón, S., Jahanbakhsh, E., Alimirzazadeh, S., Maertens, A., Avellan, F.: FVPM numerical simulation of the effect of particle shape and elasticity on impact erosion. Wear 430, 108–119 (2019).

    CAS  Article  Google Scholar 

  29. 29.

    Aponte, R.D., Teran, L.A., Ladino, J.A., Larrahondo, F., Coronado, J.J., Rodrıguez, S.A.: Reprint of “Computational study of the particle size effect on a jet erosion wear device.” Wear 376, 526–532 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Kong, D., Dong, C., Ni, X., Li, X.: Corrosion of metallic materials fabricated by selective laser melting. NPJ. Mater. Degrad. 3(1), 1–14 (2019).

    CAS  Article  Google Scholar 

  31. 31.

    Kumar, S., Kruth, J.-P.: Wear performance of SLS/SLM materials. Adv. Eng. Mater. 10(8), 750–753 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    Sun, Y., Moroz, A., Alrbaey, K.: Sliding wear characteristics and corrosion behaviour of selective laser melted 316L stainless steel. J. Mater. Eng. Perform. 23(2), 518–526 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    Gu, D., Hong, C., Meng, G.: Densification, microstructure, and wear property of in situ titanium nitride-reinforced titanium silicide matrix composites prepared by a novel selective laser melting process. Metall. Mater. Trans. A. 43(2), 697–708 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    Attar, H., Ehtemam-Haghighi, S., Kent, D., Okulov, I.V., Wendrock, H., Bӧnisch, M., et al.: Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting. Mater. Sci. Eng. A. 688, 20–26 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    Prashanth, K.G., Debalina, B., Wang, Z., Gostin, P.F., Gebert, A., Calin, M., et al.: Tribological and corrosion properties of Al–12Si produced by selective laser melting. J. Mater. Res. 29(17), 2044–2054 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    Prashanth, K.G., Scudino, S., Chaubey, A.K., Löber, L., Wang, P., Attar, H., et al.: Processing of Al–12Si–TNM composites by selective laser melting and evaluation of compressive and wear properties. J. Mater. Res. 31(1), 55–65 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    AlMangour, B., Grzesiak, D., Yang, J.M.: Rapid fabrication of bulk-form TiB2/316L stainless steel nanocomposites with novel reinforcement architecture and improved performance by selective laser melting. J. Alloy. Compd. 680, 480–493 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    AlMangour, B., Grzesiak, D., Yang, J.M.: In-situ formation of novel TiC-particle-reinforced 316L stainless steel bulk-form composites by selective laser melting. J. Alloy. Compd. 706, 409–418 (2017).

    CAS  Article  Google Scholar 

  39. 39.

    Kang, N., Coddet, P., Liao, H., Baur, T., Coddet, C.: Wear behavior and microstructure of hypereutectic Al-Si alloys prepared by selective laser melting. Appl. Surf. Sci. 378, 142–149 (2016).

    CAS  Article  Google Scholar 

  40. 40.

    Kaya, G., Yildiz, F., Hacisalihoğlu, İ: Characterization of the structural and tribological properties of medical Ti6Al4V alloy produced in different production parameters using selective laser melting. 3D Print. Addit. Manuf. 6(5), 253–261 (2019).

    Article  Google Scholar 

  41. 41.

    Zhu, Y., Zou, J., Chen, X., Yang, H.: Tribology of selective laser melting processed parts: Stainless steel 316 L under lubricated conditions. Wear 350, 46–55 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Zhu, Y., Chen, X., Zou, J., Yang, H.: Sliding wear of selective laser melting processed Ti6Al4V under boundary lubrication conditions. Wear 368, 485–495 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Zhu, Y., Yang, Y., Lu, P., Ge, X., Yang, H.: Influence of surface pores on selective laser melted parts under lubricated contacts: a case study of a hydraulic spool valve. Virtual. Phys. Prototyp. 14(4), 395–408 (2019).

    Article  Google Scholar 

  44. 44.

    Yang, Y., Zhu, Y., Khonsari, M.M., Yang, H.: Wear anisotropy of selective laser melted 316L stainless steel. Wear 428, 376–386 (2019).

    CAS  Article  Google Scholar 

  45. 45.

    Zou, J., Zhu, Y., Pan, M., Xie, T., Chen, X., Yang, H.: A study on cavitation erosion behavior of AlSi10Mg fabricated by selective laser melting (SLM). Wear 376, 496–506 (2017).

    CAS  Article  Google Scholar 

  46. 46.

    Hardes, C., Pöhl, F., Roettger, A., Thiele, M., Theisen, W., Esen, C.: Cavitation erosion resistance of 316L austenitic steel processed by selective laser melting (SLM). Addit. Manuf. 29, 100786 (2019).

    CAS  Article  Google Scholar 

  47. 47.

    Ruff, A.W., Ives, L.K.: Measurement of solid particle velocity in erosive wear. Wear 35(1), 195–199 (1975).

    Article  Google Scholar 

  48. 48.

    Antonov, M., Pirso, J., Vallikivi, A., Goljandin, D., Hussainova, I.: The effect of fine erodent retained on the surface during erosion of metals, ceramics, plastic, rubber and hardmetal. Wear 354, 53–68 (2016).

    CAS  Article  Google Scholar 

  49. 49.

    Wang, L.Z., Wang, S., Wu, J.J.: Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting. Opt. Laser Technol. 96, 88–96 (2017).

    CAS  Article  Google Scholar 

  50. 50.

    Pyka, G., Kerckhofs, G., Papantoniou, I., Speirs, M., Schrooten, J., Wevers, M.: Surface roughness and morphology customization of additive manufactured open porous Ti6Al4V structures. Materials. 6(10), 4737–4757 (2013).

    CAS  Article  Google Scholar 

  51. 51.

    Qiu, C., Panwisawas, C., Ward, M., Basoalto, H.C., Brooks, J.W., Attallah, M.M.: On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater. 96, 72–79 (2015).

    CAS  Article  Google Scholar 

  52. 52.

    Cherry, J.A., Davies, H.M., Mehmood, S., Lavery, N.P., Brown, S.G.R., Sienz, J.: Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int. J. Adv. Manuf. Technol. 76(5–8), 869–879 (2015).

    Article  Google Scholar 

  53. 53.

    Sander, G., Thomas, S., Cruz, V., Jurg, M., Birbilis, N., Gao, X., Hutchinson, C.R.: On the corrosion and metastable pitting characteristics of 316L stainless steel produced by selective laser melting. J. Electrochem. Soc. 164, C250–C257 (2017).

    CAS  Article  Google Scholar 

  54. 54.

    Kempen, K., Thijs, L., Van Humbeeck, J., Kruth, J.P.: Processing AlSi10Mg by selective laser melting: parameter optimisation and material characterization. Mater. Sci. Technol. 31, 917–923 (2015).

    CAS  Article  Google Scholar 

  55. 55.

    Carter, L.N., Essa, K., Attallah, M.M.: Optimisation of selective laser melting for a high temperature Ni-superalloy. Rapid Prototyp J. 21, 423–432 (2015).

    Article  Google Scholar 

  56. 56.

    Nguyen, Q.B., Nguyen, V.B., Lim, C.Y.H., Trinh, Q.T., Sankaranarayanan, S., Zhang, Y.W., Gupta, M.: Effect of impact angle and testing time on erosion of stainless steel at higher velocities. Wear 321, 87–93 (2014).

    CAS  Article  Google Scholar 

  57. 57.

    Laguna-Camacho, J.R., Marquina-Chávez, A., Mendez-Mendez, J.V., Vite-Torres, M., Gallardo-Hernandez, E.A.: Solid particle erosion of AISI 304, 316 and 420 stainless steels. Wear 301(1–2), 398–405 (2013).

    CAS  Article  Google Scholar 

  58. 58.

    Chang, L.C., Hsui, I.C., Chen, L.H., Lui, T.S.: A study on particle erosion behavior of ductile irons. Scripta Mater. 52, 609–613 (2005).

    CAS  Article  Google Scholar 

  59. 59.

    Rodriguez, E., Flores, M., Pérez, A., Mercado-Solis, R.D., González, R., Rodriguez, J., Valtierra, S.: Erosive wear by silica sand on AISI H13 and 4140 steels. Wear 267(11), 2109–2115 (2009).

    CAS  Article  Google Scholar 

  60. 60.

    Kong, D., Dong, C., Ni, X., Zhang, L., Yao, J., Man, C., et al.: Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes. J. Mater. Sci. Technol. 35(7), 1499–1507 (2019).

    Article  Google Scholar 

  61. 61.

    Montero Sistiaga, M.L., Nardone, S., Hautfenne, C., Van Humbeeck, J.: Effect of heat treatment of 316L stainless steel produced by selective laser melting (SLM). In: Proc 27th Annual Int Sol Freeform Fabrıc Symp—An Additive Manufacturing Conf. 2016 August; pp. 558–565.

  62. 62.

    Kamariah, M.S.I.N., Harun, W.S.W., Khalil, N.Z., Ahmad, F., Ismail, M.H., Sharif, S.: Effect of heat treatment on mechanical properties and microstructure of selective laser melting 316L stainless steel. In: Proc 4th Int Conf (ICMER2017) IOP Conf Ser: Mater Sci Eng. 2017 August 1–2;257:012021 (2017).

  63. 63.

    Segura, I.A., Murr, L.E., Terrazas, C.A., Bermudez, D., Mireles, J., Injeti, V.S.V., et al.: Grain boundary and microstructure engineering of Inconel 690 cladding on stainless-steel 316L using electron-beam powder bed fusion additive manufacturing. J. Mater. Sci. Technol. 35(2), 351–367 (2019).

    Article  Google Scholar 

  64. 64.

    Saeidi, K., Gao, X., Zhong, Y., Shen, Z.J.: Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater. Sci. Eng. A. 625, 221–229 (2015).

    CAS  Article  Google Scholar 

  65. 65.

    Kumar, R., Antonov, M., Beste, U., Goljandin, D.: Assessment of 3D printed steels and composites intended for wear applications in abrasive, dry or slurry erosive conditions. Int. J. Ref. Met. 86, 105–126 (2020).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Recep Gümrük.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azakli, Z., Gümrük, R. Particle Erosion Performance of Additive Manufactured 316L Stainless Steel Materials. Tribol Lett 69, 130 (2021).

Download citation


  • 316L stainless steel
  • Selective laser melting
  • Solid particle erosion
  • Additive manufacturing