Abstract
Many critical parts such as surface parts of high-speed trains, bins and hoppers, and pipes, bends and valves in material transportation applications as well as a helicopter, mixer, and turbine blades, which can be exposed to particle wear due to the application environment, can be easily manufactured today due to the advances in 3D printing technology. For this reason, an experimental study was carried out to determine the particle erosion behavior of 316L stainless steel parts built by the laser melting method, which is one of the 3D printing technologies. The rectangular plate samples produced with various laser manufacturing parameters were subjected to particle erosion tests at different impingement angles in accordance with the ASTM G76 standard at 140 m/s impact speed. The results showed that the erosion behavior develops in a characteristic similar to the wrought sample, and laser parameters play an efficient role. For example, the porosity ratio decreases at low scanning speeds, resulting in significant improvements in erosion behavior. Also, it was found that the particle erosion behavior of the 3D printed parts could be improved in a serious amount by applying a heat treatment process. Consequently, the obtained results in this study promotes the more comprehensive works regarding the optimization of several laser manufacturing parameters such as scan speed, build direction, laser power, hatch spacing, layer thickness, scan strategy and laser exposure time to obtain the best particle erosion behavior and determination of the most suitable materials among the several others which can be used in 3D printing.
This is a preview of subscription content, access via your institution.















References
Zhu, Y., Zou, J., Yang, H.: Wear performance of metal parts fabricated by selective laser melting: A literature review. J. Zhejiang Univ. Sci. A. 19(2), 95–110 (2018). https://doi.org/10.1631/jzus.A1700328
Yerramareddy, S., Bahadur, S.: Effect of operational variables, microstructure and mechanical properties on the erosion of Ti-6Al-4V. Wear 142, 253–263 (1991). https://doi.org/10.1016/0043-1648(91)90168-T
Okonkwo, P.C., Mohamed, A.M.A., Ahmed, E.: Influence of particle velocities and impact angles on the erosion mechanisms of AISI 1018 steel. Adv. Mater. Lett. 6(7), 653–659 (2015). https://doi.org/10.5185/amlett.2015.5645
Akbarzadeh, E., Elsaadawy, E., Sherik, A.M., Spelt, J.K., Papini, M.: The solid particle erosion of 12 metals using magnetite erodent. Wear 282, 40–51 (2012). https://doi.org/10.1016/j.wear.2012.01.021
Liu, R., Yao, J.H., Zhang, Q.L., Yao, M.X., Collier, R.: Sliding wear and solid-particle erosion resistance of a novel high-tungsten Stellite alloy. Wear 322, 41–50 (2015). https://doi.org/10.1016/j.wear.2014.10.012
Yan, C., Chen, W., Zhao, Z.: Experimental study on the high-speed impact of a sand particle on Ti–6Al–4V. Proc. IMechE J. 234(4), 632–646 (2019). https://doi.org/10.1177/1350650119866046
Patnaik, A., Satapathy, A., Chand, N., Barkoula, N.M.: Solid particle erosion wear characteristics of fiber and particulate filled polymer composites: a review. Wear 268(1–2), 249–263 (2010). https://doi.org/10.1016/j.wear.2009.07.021
Miyazaki, N.: Solid particle erosion of composite materials: a critical review. J. Compos. Mater. 50(23), 3175–3217 (2016). https://doi.org/10.1177/0021998315617818
Öztürk, B., Gedikli, H., Kılıçarslan, Y.S.: Erosive wear characteristics of E-glass fiber reinforced silica fume and zinc oxide-filled epoxy resin composites. Polym. Compos. 41(1), 326–337 (2020). https://doi.org/10.1002/pc.25372
Cernuschi, F., Guardamagna, C., Capelli, S., Lorenzoni, L., Mack, D.E., Moscatelli, A.: Solid particle erosion of standard and advanced thermal barrier coatings. Wear 348, 43–51 (2016). https://doi.org/10.1016/j.wear.2015.10.021
Peat, T., Galloway, A., Toumpis, A., Harvey, D., Yang, W.H.: Performance evaluation of HVOF deposited cermet coatings under dry and slurry erosion. Surf. Coat. Technol. 300, 118–127 (2016). https://doi.org/10.1016/j.surfcoat.2016.05.039
Zhang, P., Li, F., Zhang, X., Zhang, Z., Tan, C., Ren, L., et al.: Effect of bionic unit shapes on solid particle erosion resistance of ZrO2–7wt%Y2O3 thermal barrier coatings processed by laser. J. Bionic Eng. 15(3), 545–557 (2018). https://doi.org/10.1007/s42235-018-0045-5
Kaplan, M., Uyaner, M., Avcu, E., Avcu, Y.Y., Karaoglanli, A.C.: Solid particle erosion behavior of thermal barrier coatings produced by atmospheric plasma spray technique. Mech. Adv. Mater. Struc. 26(19), 1606–1612 (2019). https://doi.org/10.1080/15376494.2018.1444221
Arjula, S., Harsha, A.P.: Study of erosion efficiency of polymers and polymer composites. Polym. Test. 25(2), 188–196 (2006). https://doi.org/10.1016/j.polymertesting.2005.10.009
Islam, M.A., Farhat, Z.N.: Effect of impact angle and velocity on erosion of API X42 pipeline steel under high abrasive feed rate. Wear 311(1–2), 180–190 (2014). https://doi.org/10.1016/j.wear.2014.01.005
Oka, Y.I., Ohnogi, H., Hosokawa, T., Matsumura, M.: The impact angle dependence of erosion damage caused by solid particle impact. Wear 203, 573–579 (1997). https://doi.org/10.1016/S0043-1648(96)07430-3
Rattan, R., Jayashree, B.: Influence of impingement angle on solid particle erosion of carbon fabric reinforced polyetherimide composite. Wear 262(5–6), 568–574 (2007). https://doi.org/10.1016/j.wear.2006.07.001
Ediriweera, M., Chladek, J., Ratnayake, C.: Effect of impact angle, exposure time, and particle size on impact erosion. Particul. Sci. Technol. (2019). https://doi.org/10.1080/02726351.2019.1663328
Shipway, P.H., Hutchings, I.M.: A method for optimizing the particle flux in erosion testing with a gas-blast apparatus. Wear 174(1–2), 169–175 (1994). https://doi.org/10.1016/0043-1648(94)90099-X
Sundararajan, G., Roy, M.: Solid particle erosion behaviour of metallic materials at room and elevated temperatures. Tribol Int. 30(5), 339–359 (1997). https://doi.org/10.1016/S0301-679X(96)00064-3
McKeen, L.W.: The effect of temperature and other factors on plastics and elastomers, 3rd edn. William Andrew, Waltham (2014)
Finnie, I.: Some reflections on the past and future of erosion. Wear 186, 1–10 (1995). https://doi.org/10.1016/0043-1648(95)07188-1
Tilly, G.P.: A two stage mechanism of ductile erosion. Wear 23(1), 87–96 (1973). https://doi.org/10.1016/0043-1648(73)90044-6
Kishore, A., Sridhar, G.B.: On evaluating erosion by sand particles in polythene system without and with ceramic particles. Polym. Test. 21(4), 473–477 (2002). https://doi.org/10.1016/S0142-9418(01)00112-X
Patnaik, A., Satapathy, A., Mahapatra, S.S., Dash, R.R.: A modeling approach for prediction of erosion behavior of glass fiber–polyester composites. J. Polym. Res. 15(2), 147–160 (2008). https://doi.org/10.1007/s10965-007-9154-2
Patnaik, A., Satapathy, A., Mahapatra, S.S., Dash, R.R.: Tribo-performance of polyester hybrid composites: damage assessment and parameter optimization using Taguchi design. Mater Design. 30(1), 57–67 (2009). https://doi.org/10.1016/j.matdes.2008.04.057
Hadavi, V., Moreno, C.E., Marcello, P.: Numerical and experimental analysis of particle fracture during solid particle erosion, part II: effect of incident angle, velocity and abrasive size. Wear 356, 146–157 (2016). https://doi.org/10.1016/j.wear.2016.03.009
Leguizamón, S., Jahanbakhsh, E., Alimirzazadeh, S., Maertens, A., Avellan, F.: FVPM numerical simulation of the effect of particle shape and elasticity on impact erosion. Wear 430, 108–119 (2019). https://doi.org/10.1016/j.wear.2019.04.023
Aponte, R.D., Teran, L.A., Ladino, J.A., Larrahondo, F., Coronado, J.J., Rodrıguez, S.A.: Reprint of “Computational study of the particle size effect on a jet erosion wear device.” Wear 376, 526–532 (2017). https://doi.org/10.1016/j.wear.2017.04.009
Kong, D., Dong, C., Ni, X., Li, X.: Corrosion of metallic materials fabricated by selective laser melting. NPJ. Mater. Degrad. 3(1), 1–14 (2019). https://doi.org/10.1038/s41529-019-0086-1
Kumar, S., Kruth, J.-P.: Wear performance of SLS/SLM materials. Adv. Eng. Mater. 10(8), 750–753 (2008). https://doi.org/10.1002/adem.200800075
Sun, Y., Moroz, A., Alrbaey, K.: Sliding wear characteristics and corrosion behaviour of selective laser melted 316L stainless steel. J. Mater. Eng. Perform. 23(2), 518–526 (2014). https://doi.org/10.1007/s11665-013-0784-8
Gu, D., Hong, C., Meng, G.: Densification, microstructure, and wear property of in situ titanium nitride-reinforced titanium silicide matrix composites prepared by a novel selective laser melting process. Metall. Mater. Trans. A. 43(2), 697–708 (2012). https://doi.org/10.1007/s11661-011-0876-8
Attar, H., Ehtemam-Haghighi, S., Kent, D., Okulov, I.V., Wendrock, H., Bӧnisch, M., et al.: Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting. Mater. Sci. Eng. A. 688, 20–26 (2017). https://doi.org/10.1016/j.msea.2017.01.096
Prashanth, K.G., Debalina, B., Wang, Z., Gostin, P.F., Gebert, A., Calin, M., et al.: Tribological and corrosion properties of Al–12Si produced by selective laser melting. J. Mater. Res. 29(17), 2044–2054 (2014). https://doi.org/10.1557/jmr.2014.133
Prashanth, K.G., Scudino, S., Chaubey, A.K., Löber, L., Wang, P., Attar, H., et al.: Processing of Al–12Si–TNM composites by selective laser melting and evaluation of compressive and wear properties. J. Mater. Res. 31(1), 55–65 (2016). https://doi.org/10.1557/jmr.2015.326
AlMangour, B., Grzesiak, D., Yang, J.M.: Rapid fabrication of bulk-form TiB2/316L stainless steel nanocomposites with novel reinforcement architecture and improved performance by selective laser melting. J. Alloy. Compd. 680, 480–493 (2016). https://doi.org/10.1016/j.jallcom.2016.04.156
AlMangour, B., Grzesiak, D., Yang, J.M.: In-situ formation of novel TiC-particle-reinforced 316L stainless steel bulk-form composites by selective laser melting. J. Alloy. Compd. 706, 409–418 (2017). https://doi.org/10.1016/j.jallcom.2017.01.149
Kang, N., Coddet, P., Liao, H., Baur, T., Coddet, C.: Wear behavior and microstructure of hypereutectic Al-Si alloys prepared by selective laser melting. Appl. Surf. Sci. 378, 142–149 (2016). https://doi.org/10.1016/j.apsusc.2016.03.221
Kaya, G., Yildiz, F., Hacisalihoğlu, İ: Characterization of the structural and tribological properties of medical Ti6Al4V alloy produced in different production parameters using selective laser melting. 3D Print. Addit. Manuf. 6(5), 253–261 (2019). https://doi.org/10.1089/3dp.2019.0017
Zhu, Y., Zou, J., Chen, X., Yang, H.: Tribology of selective laser melting processed parts: Stainless steel 316 L under lubricated conditions. Wear 350, 46–55 (2016). https://doi.org/10.1016/j.wear.2016.01.004
Zhu, Y., Chen, X., Zou, J., Yang, H.: Sliding wear of selective laser melting processed Ti6Al4V under boundary lubrication conditions. Wear 368, 485–495 (2016). https://doi.org/10.1016/j.wear.2016.09.020
Zhu, Y., Yang, Y., Lu, P., Ge, X., Yang, H.: Influence of surface pores on selective laser melted parts under lubricated contacts: a case study of a hydraulic spool valve. Virtual. Phys. Prototyp. 14(4), 395–408 (2019). https://doi.org/10.1080/17452759.2019.1633930
Yang, Y., Zhu, Y., Khonsari, M.M., Yang, H.: Wear anisotropy of selective laser melted 316L stainless steel. Wear 428, 376–386 (2019). https://doi.org/10.1016/j.wear.2019.04.001
Zou, J., Zhu, Y., Pan, M., Xie, T., Chen, X., Yang, H.: A study on cavitation erosion behavior of AlSi10Mg fabricated by selective laser melting (SLM). Wear 376, 496–506 (2017). https://doi.org/10.1016/j.wear.2016.11.031
Hardes, C., Pöhl, F., Roettger, A., Thiele, M., Theisen, W., Esen, C.: Cavitation erosion resistance of 316L austenitic steel processed by selective laser melting (SLM). Addit. Manuf. 29, 100786 (2019). https://doi.org/10.1016/j.addma.2019.100786
Ruff, A.W., Ives, L.K.: Measurement of solid particle velocity in erosive wear. Wear 35(1), 195–199 (1975). https://doi.org/10.1016/0043-1648(75)90154-4
Antonov, M., Pirso, J., Vallikivi, A., Goljandin, D., Hussainova, I.: The effect of fine erodent retained on the surface during erosion of metals, ceramics, plastic, rubber and hardmetal. Wear 354, 53–68 (2016). https://doi.org/10.1016/j.wear.2016.02.018
Wang, L.Z., Wang, S., Wu, J.J.: Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting. Opt. Laser Technol. 96, 88–96 (2017). https://doi.org/10.1016/j.optlastec.2017.05.006
Pyka, G., Kerckhofs, G., Papantoniou, I., Speirs, M., Schrooten, J., Wevers, M.: Surface roughness and morphology customization of additive manufactured open porous Ti6Al4V structures. Materials. 6(10), 4737–4757 (2013). https://doi.org/10.3390/ma6104737
Qiu, C., Panwisawas, C., Ward, M., Basoalto, H.C., Brooks, J.W., Attallah, M.M.: On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater. 96, 72–79 (2015). https://doi.org/10.1016/j.actamat.2015.06.004
Cherry, J.A., Davies, H.M., Mehmood, S., Lavery, N.P., Brown, S.G.R., Sienz, J.: Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int. J. Adv. Manuf. Technol. 76(5–8), 869–879 (2015). https://doi.org/10.1007/s00170-014-6297-2
Sander, G., Thomas, S., Cruz, V., Jurg, M., Birbilis, N., Gao, X., Hutchinson, C.R.: On the corrosion and metastable pitting characteristics of 316L stainless steel produced by selective laser melting. J. Electrochem. Soc. 164, C250–C257 (2017). https://doi.org/10.1149/2.0551706jes
Kempen, K., Thijs, L., Van Humbeeck, J., Kruth, J.P.: Processing AlSi10Mg by selective laser melting: parameter optimisation and material characterization. Mater. Sci. Technol. 31, 917–923 (2015). https://doi.org/10.1179/1743284714Y.0000000702
Carter, L.N., Essa, K., Attallah, M.M.: Optimisation of selective laser melting for a high temperature Ni-superalloy. Rapid Prototyp J. 21, 423–432 (2015). https://doi.org/10.1108/RPJ-06-2013-0063
Nguyen, Q.B., Nguyen, V.B., Lim, C.Y.H., Trinh, Q.T., Sankaranarayanan, S., Zhang, Y.W., Gupta, M.: Effect of impact angle and testing time on erosion of stainless steel at higher velocities. Wear 321, 87–93 (2014). https://doi.org/10.1016/j.wear.2014.10.010
Laguna-Camacho, J.R., Marquina-Chávez, A., Mendez-Mendez, J.V., Vite-Torres, M., Gallardo-Hernandez, E.A.: Solid particle erosion of AISI 304, 316 and 420 stainless steels. Wear 301(1–2), 398–405 (2013). https://doi.org/10.1016/j.wear.2012.12.047
Chang, L.C., Hsui, I.C., Chen, L.H., Lui, T.S.: A study on particle erosion behavior of ductile irons. Scripta Mater. 52, 609–613 (2005). https://doi.org/10.1016/j.scriptamat.2004.11.026
Rodriguez, E., Flores, M., Pérez, A., Mercado-Solis, R.D., González, R., Rodriguez, J., Valtierra, S.: Erosive wear by silica sand on AISI H13 and 4140 steels. Wear 267(11), 2109–2115 (2009). https://doi.org/10.1016/j.wear.2009.08.009
Kong, D., Dong, C., Ni, X., Zhang, L., Yao, J., Man, C., et al.: Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes. J. Mater. Sci. Technol. 35(7), 1499–1507 (2019). https://doi.org/10.1016/j.jmst.2019.03.003
Montero Sistiaga, M.L., Nardone, S., Hautfenne, C., Van Humbeeck, J.: Effect of heat treatment of 316L stainless steel produced by selective laser melting (SLM). In: Proc 27th Annual Int Sol Freeform Fabrıc Symp—An Additive Manufacturing Conf. 2016 August; pp. 558–565.
Kamariah, M.S.I.N., Harun, W.S.W., Khalil, N.Z., Ahmad, F., Ismail, M.H., Sharif, S.: Effect of heat treatment on mechanical properties and microstructure of selective laser melting 316L stainless steel. In: Proc 4th Int Conf (ICMER2017) IOP Conf Ser: Mater Sci Eng. 2017 August 1–2;257:012021 (2017). https://doi.org/10.1088/1757-899X/257/1/012021
Segura, I.A., Murr, L.E., Terrazas, C.A., Bermudez, D., Mireles, J., Injeti, V.S.V., et al.: Grain boundary and microstructure engineering of Inconel 690 cladding on stainless-steel 316L using electron-beam powder bed fusion additive manufacturing. J. Mater. Sci. Technol. 35(2), 351–367 (2019). https://doi.org/10.1016/j.jmst.2018.09.059
Saeidi, K., Gao, X., Zhong, Y., Shen, Z.J.: Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater. Sci. Eng. A. 625, 221–229 (2015). https://doi.org/10.1016/j.msea.2014.12.018
Kumar, R., Antonov, M., Beste, U., Goljandin, D.: Assessment of 3D printed steels and composites intended for wear applications in abrasive, dry or slurry erosive conditions. Int. J. Ref. Met. 86, 105–126 (2020). https://doi.org/10.1016/j.ijrmhm.2019.105126
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Azakli, Z., Gümrük, R. Particle Erosion Performance of Additive Manufactured 316L Stainless Steel Materials. Tribol Lett 69, 130 (2021). https://doi.org/10.1007/s11249-021-01503-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11249-021-01503-0
Keywords
- 316L stainless steel
- Selective laser melting
- Solid particle erosion
- Additive manufacturing