Skip to main content

Influence of Operating Temperature on the Static Characteristics of an Externally Pressurized Thrust Bearing Lubricated with Refrigerant Gas


The viscous heat of gas bearings and heat generated by the motor cause a large temperature difference between the bearing surface and lubricating gas influencing the bearing performance in gas-bearing applications. This study investigated the effects of the bearing surface temperature and supply gas temperature on the static characteristics of a six-orifice externally pressurized gas thrust bearing under air, CO2, and R22 lubrication, numerically and experimentally. The results show that the load increases as the bearing surface temperature increases, while the static stiffness increases at first but decreases later. In contrast, the load and static stiffness decrease with increasing supply gas temperature. The findings can provide insights on designing gas bearings using refrigerant gases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    Hengeveld, D.W., Mathison, M.M., Braun, J.E., Groll, E.A., Williams, A.D.: Review of modern spacecraft thermal control technologies. HVAC&R Res. 16(2), 189–220 (2010).

    Article  Google Scholar 

  2. 2.

    Swanson, T.D., Birur, G.C.: NASA thermal control technologies for robotic spacecraft. Appl. Therm. Eng. 23(9), 1055–1065 (2003).

    Article  Google Scholar 

  3. 3.

    Chua, K.J., Chou, S.K., Yang, W.M.: Advances in heat pump systems: a review. Appl. Energy 87(12), 3611–3624 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    Gao, Q., Chen, W.Q., Lu, L.H., Huo, D.H., Cheng, K.: Aerostatic bearings design and analysis with the application to precision engineering: State-of-the-art and future perspectives. Tribol. Int. 135, 1–17 (2019).

    Article  Google Scholar 

  5. 5.

    Schwartz, J.L., Peck, M.A., Hall, C.D.: Historical review of air-bearing spacecraft simulators. J. Guid. Control Dyn. 26(4), 513–522 (2003).

    Article  Google Scholar 

  6. 6.

    Ciarcia, M., Cristi, R., Romano, M.M.: Emulating scaled Clohessy-Wiltshire dynamics on an air-bearing spacecraft simulation testbed. J. Guid. Control Dyn. 40(10), 2496–2510 (2017).

    Article  Google Scholar 

  7. 7.

    Li, Y.Y., Lei, G., Sun, Y., Wang, L.: Effect of environmental pressure enhanced by a booster on the load capacity of the aerodynamic gas bearing of a turbo expander. Tribol. Int. 105, 77–84 (2017).

    Article  Google Scholar 

  8. 8.

    Ise, T., Nakatsuka, M., Nagao, K., Matsubara, M., Kawamura, S., Asami, T., Kinugawa, T., Nishimura, K.: Externally pressurized gas journal bearing with slot restrictors arranged in the axial direction. Precis. Eng. 50, 286–292 (2017).

    Article  Google Scholar 

  9. 9.

    Chien, C.H., Jang, J.Y.: 3-D numerical and experimental analysis of a built-in motorized high-speed spindle with helical water cooling channel. Appl. Therm. Eng. 28(17), 2327–2336 (2008).

    Article  Google Scholar 

  10. 10.

    Lee, Y.B., Kwak, H.D., Kim, C.H., Lee, N.S.: Numerical prediction of slip flow effect on gas-lubricated journal bearings for MEMS/MST-based micro-rotating machinery. Tribol. Int. 38, 89–96 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    Zhang, X.Q., Wang, X.L., Liu, R., Wang, B.: Influence of temperature on nonlinear dynamic characteristic of spiral-grooved gas-lubricated thrust bearing-rotor systems for microengine. Tribol. Int. 61, 138–143 (2013).

    Article  Google Scholar 

  12. 12.

    Radil, K., Zeszotek, M.: An experimental investigation into the temperature profile of a compliant foil air bearing. Tribol. Trans. 47, 470–479 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    Peng, Z.C., Khonsari, M.M.: A Thermohydrodynamic analysis of foil journal bearings. J. Tribol. 128(3), 534–541 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    Dellacorte, C.: A New foil air bearing test rig for use to 700 °C and 70,000 rpm. Tribol. Trans. 41(3), 335–340 (1998).

    CAS  Article  Google Scholar 

  15. 15.

    Salehi, M., Swanson, E., Heshmat, H.: Thermal features of compliant foil bearings-theory and experiments. J. Tribol. 123(3), 566–571 (2001).

    Article  Google Scholar 

  16. 16.

    Kim, T.H., San Andres, L.: Thermohydrodynamic model predictions and performance measurements of bump-type foil bearing for oil-free turboshaft engines in rotorcraft propulsion systems. J. Tribol. 132(1), 011701 (2010).

    Article  Google Scholar 

  17. 17.

    Gao, S.Y., Cheng, K., Ding, H., Fu, H.Y.: Multiphysics-based design and analysis of the high-speed aerostatic spindle with application to micro-milling. J. Eng. Tribol. 230(7), 852–871 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Dikmen, E., van der Hoogt, P.J.M., de Boer, A., Aarts, R.G.K.M.: Influence of multiphysical effects on the dynamics of high speed minirotors—Part I: theory. J. Vib. Acoust. 132(3), 031010 (2010).

    Article  Google Scholar 

  19. 19.

    Dikmen, E., van der Hoogt, P.J.M., de Boer, A., Aarts, R.G.K.M.: Influence of multiphysical effects on the dynamics of high speed minirotors—Part II: results. J. Vib. Acoust. 132(3), 031011 (2010).

    Article  Google Scholar 

  20. 20.

    Gao, Q., Lu, L.H., Zhang, R., Song, L.Y., Huo, D.H.: Investigation on the thermal behavior of an aerostatic spindle system considering multi-physics coupling effect. Int. J. Adv. Manuf. Technol. 102(9–12), 3813–3823 (2019).

    Article  Google Scholar 

  21. 21.

    Li, T.J., Ding, H., Cheng, K.: Dynamics design and analysis of direct-drive aerostatic slideways in a multi-physics simulation environment. Int. J. Mech. Eng. Educ. 41(4), 315–328 (2013).

    Article  Google Scholar 

  22. 22.

    Yan, R.Z., Wang, L.Y., Wang, S.Z.: Investigating the influences of pressure-equalizing grooves on characteristics of aerostatic bearings based on CFD. Ind. Lubr. Tribol. 71(7), 853–860 (2019).

    Article  Google Scholar 

  23. 23.

    Ishibashi, K., Kondo, A., Kawada, S., Miyatake, M., Yoshimoto, S., Stolarski, T.: Static and dynamic characteristics of a downsized aerostatic circular thrust bearing with a single feed hole. Precis. Eng. 60, 448–457 (2019).

    Article  Google Scholar 

  24. 24.

    Zhuang, H., Ding, J.G., Chen, P., Chang, Y., Zeng, X.Y., Yang, H., Liu, X.B., Wei, W.: Numerical study on static and dynamic performances of a double-pad annular inherently compensated aerostatic thrust bearing. J. Tribol. 141(5), 1–14 (2019).

    Article  Google Scholar 

  25. 25.

    Eleshaky, M.E.: CFD investigation of pressure depressions in aerostatic circular thrust bearings. Tribol. Int. 42(7), 1108–1117 (2009).

    Article  Google Scholar 

  26. 26.

    Belforte, G., Raparelli, T., Trivella, A., Viktorov, V., Visconte, C.: CFD Analysis of a simple orifice-type feeding system for aerostatic bearings. Tribol. Lett. 58(2), 25 (2015).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yulong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lian, H., Rong, C. & Li, Y. Influence of Operating Temperature on the Static Characteristics of an Externally Pressurized Thrust Bearing Lubricated with Refrigerant Gas. Tribol Lett 69, 123 (2021).

Download citation


  • Thermal coupling analysis
  • Gas thrust bearing
  • Refrigerant gas lubricated
  • Static characteristics